
Data sharing

Contents1

Use cases . 22

Selecting an initiator . 23

Discovery . 34

Connection . 35

Communication . 46

Publish/subscribe via D-Bus . 47

Query-based access via D-Bus . 58

Provider-initiated push via D-Bus 59

Consumer-initiated pull via a stream 610

Provider-initiated push via a stream 711

Bidirectional communication via D-Bus 812

Bidirectional communication via a socket or pair of pipes 813

Resuming communication . 814

Stored state . 915

This page describes design patterns that can be used for inter-process commu-16

nication, particularly between applications and agents in the same or different17

app-bundles. We consider a situation in which one or more consumers receive18

information from one or more providers; we refer to the consumer and provider19

together as peers.20

Use cases21

• Points of interest1 should use one of these patterns22

• Sharing2 could use one of these patterns23

• Global search (see ConceptDesigns3) currently carries out the equivalent24

of interface discovery4 by reading the manifest directly, but other than25

that it is similar to Query-based access via D-Bus26

Selecting an initiator27

The first design question is which peer should initiate the connection (the ini-28

tiator) and which one should not (the responder).29

When the connection is first established, the initiator must already be running.30

However, the responder does not necessarily need to be running: in some cases31

it could be started automatically.32

Some guidelines:33

• If one of the peers is a HMI (user interface) that only appears when it is34

started by the user, but the other is an agent, then the HMI should be35

the initiator and the agent should be the responder.36

1https://martyn.pages.apertis.org/apertis-website/concepts/points_of_interest/
2https://martyn.pages.apertis.org/apertis-website/concepts/sharing/
3https://martyn.pages.apertis.org/apertis-website/concepts/global-search/
4https://martyn.pages.apertis.org/apertis-website/concepts/interface_discovery/

2

https://martyn.pages.apertis.org/apertis-website/concepts/points_of_interest/
https://martyn.pages.apertis.org/apertis-website/concepts/sharing/
https://martyn.pages.apertis.org/apertis-website/concepts/global-search/
https://martyn.pages.apertis.org/apertis-website/concepts/interface_discovery/
https://martyn.pages.apertis.org/apertis-website/concepts/points_of_interest/
https://martyn.pages.apertis.org/apertis-website/concepts/sharing/
https://martyn.pages.apertis.org/apertis-website/concepts/global-search/
https://martyn.pages.apertis.org/apertis-website/concepts/interface_discovery/

• If one of the peers is assumed to be running already, but the other can37

be auto-started on-demand, then the peer that is running already should38

be the initiator, and the peer that can be auto-started should be the39

responder.40

• If the connection is normally only established when one of the peers re-41

ceives user input, then that peer should be the initiator.42

• If there is no other reason to prefer one direction over the other, the43

consumer is usually the initiator.44

Where there are multiple consumers or multiple providers, base the decisions45

on which of these things is expected to be most frequent among consumers and46

among providers.47

Discovery48

Each initiator carries out Interface discovery5 to find implementations of the49

responder. If the initiator is the consumer, the interface that is discovered50

might have a name like com.example.PointsOfInterestProvider. If the initia-51

tor is the provider, the interface that is discovered might have a name like52

com.example.DebugLogConsumer.53

If the responder is known to be a platform service, then interface discovery is54

unnecessary and should not be used. Instead, the initiator(s) may assume that55

the responder exists. Its API documentation should include its well-known bus56

name, and the object paths and interfaces of its “entry point” object.57

Connection58

Each initiator initiates communication with each responder by sending a D-Bus59

method call.60

We recommend that each responder has a D-Bus well-known name matching its61

app ID, using the reversed-DNS-name convention described in the Applications62

design document. For example, if Collabora implemented a PointsOfInterest-63

Provider that advertised the locations of open source conferences, it might be64

named uk.co.collabora.ConferenceList. The responder should be “D-Bus acti-65

vatable”: that is, it should install the necessary D-Bus and systemd files so66

that it can be started automatically in response to a D-Bus message. To make67

this straightforward, we recommend that the platform or the app-store should68

generate these automatically from the application manifest.69

Each interface may define its own convention for locating D-Bus objects70

within an implementation, but we recommend the conventions described in the71

freedesktop.org Desktop Entry specification6, summarized here:72

5https://martyn.pages.apertis.org/apertis-website/concepts/interface_discovery/
6http://standards.freedesktop.org/desktop-entry-spec/desktop-entry-spec-latest.html#

interfaces

3

https://martyn.pages.apertis.org/apertis-website/concepts/interface_discovery/
http://standards.freedesktop.org/desktop-entry-spec/desktop-entry-spec-latest.html#interfaces
http://standards.freedesktop.org/desktop-entry-spec/desktop-entry-spec-latest.html#interfaces
http://standards.freedesktop.org/desktop-entry-spec/desktop-entry-spec-latest.html#interfaces
https://martyn.pages.apertis.org/apertis-website/concepts/interface_discovery/
http://standards.freedesktop.org/desktop-entry-spec/desktop-entry-spec-latest.html#interfaces
http://standards.freedesktop.org/desktop-entry-spec/desktop-entry-spec-latest.html#interfaces

• the responder exports a D-Bus object path derived from its app ID (well-73

known name) in the obvious way, for example uk.co.collabora.ConferenceList74

would have an object at /uk/co/collabora/ConferenceList75

• the object at that object path implements a D-Bus interface with76

the same name that was used for interface discovery, for example77

com.example.PointsOfInterestProvider78

• the object at that object path may implement any other interfaces, such79

as org.freedesktop.Application and/or org.freedesktop.DBus.Properties80

If the responder is a platform component, then it does not have an app ID, but81

it should have a documented well-known name following the same naming con-82

vention. If it is a platform component standardized by Apertis, its name should83

normally be in the org.apertis.* namespace. If it implements a standard inter-84

face defined by a third party and that interface specifies a well-known name to be85

used by all implementations (such as org.freedesktop.Notifications), it should86

use that standardized well-known name. If it is a vendor-specific component,87

its name should be in the vendor’s namespace, for example com.bosch.*.88

Communication89

There are several patterns which could be used for the actual communication.90

If the communication is expected to be relatively infrequent (an average of91

several seconds per message, rather than several messages per second) and con-92

vey reasonably small volumes of data (bytes or kilobytes per message, but not93

megabytes), and the latency of D-Bus is acceptable, we recommend that the94

initiator and responder use D-Bus to communicate.95

If the communication is frequent or high-throughput, or low latency is required,96

we recommend the use of an out-of-band stream.97

Publish/subscribe via D-Bus98

This pattern is very commonly used when the initiator is the consumer, the99

message and data rates are suitable for D-Bus, and the communication continues100

over time.101

• The consumer can receive the initial state of the provider by calling a102

method such as ListPointsOfInterest(), or by retrieving its D-Bus proper-103

ties using GetAll(). This method call is often referred to as state recovery.104

• The provider can notify all consumers of changes to its state by emitting105

broadcast signals, or notify a single consumer by using unicast signals.106

The consumer is expected to connect D-Bus signal handlers before it calls107

the initial method, to avoid missing events.108

• We recommend that the provider should hold its state on disk or in mem-109

ory so that it can provide state recovery. However, if there is a strong110

reason for a particular interaction to use a “carousel7” model in which111

7https://en.wikipedia.org/wiki/Data_and_object_carousel

4

https://en.wikipedia.org/wiki/Data_and_object_carousel
https://en.wikipedia.org/wiki/Data_and_object_carousel

state is not available, this can be modelled by having the initial method112

call activate the provider, but not return any state.113

• For efficiency, the design of the provider should ensure that the consumer114

can operate correctly by connecting to signals, then making the state115

recovery method call once. For robustness, the design of the provider116

should ensure that calling the state recovery method call at any time117

would give a correct result, consistent with the state changes implied by118

signals.119

• If required, the consumer can control the provider by calling additional120

D-Bus methods defined by the interface (for example an interface might121

define Pause(), Resume() and/or Refresh() methods)122

A complete interface for the provider might look like this (pseudocode):123

interface com.example.ThingProvider: /* (xy) represents whatever data struc-124

ture is needed */ method ListThings() -> a(xy): things sig-125

nal ThingAdded(x: first_attribute, y: second_attribute) signal ThingRe-126

moved(x: first_attribute, y: second_attribute) method Refresh() -> nothing127

Query-based access via D-Bus128

This pattern is commonly used where the initiator is the consumer and the inter-129

face is used for a series of short-lived HTTP-like request/response transactions,130

instead of an ongoing stream of events or a periodically updated state.131

• The consumer sends a request to the provider via a D-Bus method call.132

This is analogous to a HTTP GET or POST operation, and can contain133

data from the consumer.134

• The provider sends back a response via the D-Bus method response.135

For example, a simple search interface might look like this (pseudocode):136

interface com.example.SearchProvider: /* Return a list of up to @max_results file:137

/// URIs with names containing @name_contains, each no larger than @max_size bytes */138

method FindFilesMatching(s: name_contains, t: max_size, u: max_results) -139

> as: file_uris140

(This is merely a simple example; a more elaborate search interface might con-141

sider factors like paging through results.)142

Provider-initiated push via D-Bus143

If the initiator is the provider and the data/message rates are suitable for D-144

Bus, the consumer could implement an interface that receives “pushed” events145

from the provider:146

• the provider can send data by calling a method such as AddPointsOfIn-147

terest()148

5

file:///
file:///
file:///

• if required, the consumer can influence the provider(s) by emitting broad-149

cast or unicast D-Bus signals defined by the interface (for example an inter-150

face might define PauseRequested, ResumeRequested and/or RefreshRe-151

quested signals)152

A complete interface for the consumer might look like this (pseudocode):153

interface com.example.ThingReceiver: /* (xy) represents whatever data struc-154

ture is needed */ method AddThings(a(xy): things) -> nothing signal Re-155

freshRequested()156

This pattern is unusual, and reversing the initiator/responder roles should be157

considered.158

Consumer-initiated pull via a stream159

If the initiator is the consumer and the data/message rates make D-Bus un-160

suitable, the provider could implement an interface that sends events into an161

out-of-band stream that is provided by the consumer when it initiates commu-162

nication, using the D-Bus type “h” (file-handle) for file descriptor passing. For163

instance, in GDBus, the “_with_unix_fd_list” versions of D-Bus APIs, such as164

g_dbus_connection_call_with_unix_fd_list(), work with file descriptor pass-165

ing.166

• The consumer should create a pipe (for example using pipe2()), keep the167

read end, and send the write end to the provider.168

• If required, the provider may send additional information, such as a filter169

to receive only a subset of the available records.170

• The consumer may pause receiving data by not reading from the pipe. The171

provider should add the pipe to its main loop in non-blocking mode; it172

will receive write error EAGAIN if the pipe is full (paused). The provider173

must be careful to write a whole record at a time: even if it received EA-174

GAIN part way through a record and skipped subsequent records, it must175

finish writing the partial record before doing anything else. Otherwise,176

the structure of the stream is likely to be corrupted.177

• If there are n providers, the consumer would read from n pipes, and could178

receive new records from any of them.179

• If there are m consumers, the provider would have m pipes, and would180

normally write each new record into each of them.181

• The consumer may stop receiving data by closing the pipe. The provider182

will receive write error EPIPE, and should respond by also closing that183

pipe.184

• If required, the consumer could control the provider by calling additional185

methods. For instance, the interface might define a ChangeFilter()186

method.187

The advantages of this design are its high efficiency and low latency. The major188

disadvantage of this design is that the provider and consumer need to agree189

6

on a framing and serialization protocol with which they can write records into190

the stream and read them out again. Designing the framing and serialization191

protocol is part of the design of the interface.192

For the serialization protocol, they might use binary TPEG records, a fixed-193

length packed binary structure, a serialized GVariant of a known type such194

as G_VARIANT_TYPE_VARIANT, or even an XML document. If streams195

in the same format might cross between virtual machines or be transferred196

across a network, interface designers should be careful to avoid implementation-197

dependent encodings such as numbers with unknown endianness, types with198

unknown byte size, or structures with implementation-dependent padding. If199

there is no well-established encoding, we suggest GVariant as a reasonable op-200

tion.201

For the framing protocol, the serialization protocol might provide its own fram-202

ing (for example, fixed-length structures of a known length do not need fram-203

ing), or the interface might document the use of an existing framing protocol204

such as netstrings8, or its own framing/packetization protocol such as “4-byte205

little-endian length followed by that much data”.206

Interface designers should also note that there is no ordering guarantee between207

different pipes or sockets, and in particular no ordering guarantee between the208

D-Bus socket and the out-of-band pipe: if a provider sends messages on two209

different pipes, there they will not necessarily be received in the same order210

they were sent.211

A complete interface might look like this (pseudocode):212

interface com.example.RapidThingProvider: /* Start receiving bi-213

nary Thing objects and write them into * @file_descriptor, until writ-214

ing fails. * * The provider should ignore SIGPIPE, and write to215

* @file_descriptor in non-blocking mode. If a write fails with * EA-216

GAIN, the provider should pause receiving records until * the pipe is ready for read-217

ing again. If a write fails with * EPIPE, this indicates that the pipe has been closed, and218

* the provider must stop writing to it. * * Arguments: * @fil-219

ter: the things to receive * @file_descriptor: the write end of a pipe, as pro-220

duced * by pipe2() */ method Provide-221

Things((some data structure): filter, h: file_descriptor) -> nothing222

method ChangeFilter((some data structure): new_filter) -> nothing223

Provider-initiated push via a stream224

If the initiator is the provider and the data/message rates make D-Bus unsuit-225

able, the consumer could implement an interface that receives events from an226

out-of-band stream that is provided by the provider when it initiates communi-227

cation, again using the D-Bus type “h” (file-handle) for file descriptor passing.228

8https://en.wikipedia.org/wiki/Netstring

7

https://en.wikipedia.org/wiki/Netstring
https://en.wikipedia.org/wiki/Netstring

• The provider should create a pipe (for example using pipe2()), keep the229

write end, and send the read end to the provider.230

• The consumer may pause receiving data by not reading from the pipe. The231

provider should add the pipe to its main loop in non-blocking mode; it will232

receive write error EAGAIN if the pipe is full (paused). The provider must233

be careful to write a whole record at a time, even if it received EAGAIN234

part way through a record and skipped subsequent records.235

• If there are n providers, the consumer would read from n pipes, and could236

receive new records from any of them.237

• If there are m consumers, the provider would have m pipes, and would238

normally write each new record into each of them.239

• The consumer may stop receiving data by closing the pipe. The provider240

will receive write error EPIPE, and should respond by also closing that241

pipe.242

As with its “pull” counterpart, the major disadvantage of this design is that the243

provider and consumer need to agree on a framing and serialization protocol.244

In addition, there is once again no ordering guarantee between different pipes245

or sockets.246

A complete interface might look like this (pseudocode):247

interface com.example.RapidThingReceiver: /* @file_descriptor is the read end of a pipe */248

method ReceiveThings(h: file_descriptor) -> nothing249

Bidirectional communication via D-Bus250

If required, the consumer could provide feedback to the provider by adding ad-251

ditional D-Bus methods and signals to the interface. For example, the Change-252

Filter method described above can be viewed as feedback from the consumer to253

the provider.254

To avoid dependency loops and the potential for deadlocks, we recommend a255

design where method calls always go from the initiator to the responder, and256

method replies and signals always go from the responder back to the initiator.257

Bidirectional communication via a socket or pair of pipes258

If required, the consumer could provide high-bandwidth, low-latency feedback259

to the provider by using file descriptor passing to transfer either an AF_UNIX260

socket or a pair of pipes (the read end of one pipe, and the write end of another),261

and using the resulting bidirectional channel for communication.262

We recommend that this is avoided where possible, since it requires the inter-263

face to specify a bidirectional protocol to use across the channel, and designing264

bidirectional protocols that will not deadlock is not a trivial task. Peer-to-peer265

D-Bus is one possibility for the bidirectional protocol.266

8

As with unidirectional pipes, there is no ordering guarantee between different267

pipes or sockets.268

Resuming communication269

If the system is restarted and the previously running applications are restored,270

and the interface is one where resuming communication makes sense, we rec-271

ommend that the original initiator re-initiates communication. This would nor-272

mally be done by repeating interface discovery9.273

In a few situations it might be preferable for the original initiator to store a list274

of the responders with which it was previously communicating, so that it can275

resume communications with exactly those responders.276

Stored state277

In some interfaces, the provider has a particular state stored in-memory or278

on-disk at any given time, and the inter-process communication works by pro-279

viding enough information that the consumer can reproduce that state. This280

approach is recommended, particularly for publish/subscribe interfaces, where281

it is conventionally what is done.282

If implementations of a publish/subscribe interface are not required to offer full283

state-recovery, the interface’s documentation should specifically say so. The284

normal assumption should be that state-recovery exists and works.285

In the interfaces other than the publish/subscribe model, the initial state may286

be replayed at the beginning of communication by assuming that the consumer287

has an empty state, and sending the same data that would normally represent288

addition of an item or event, either as-is or with some indication that this event289

is being “replayed”. For example, in Consumer-initiated pull via a stream, the290

provider would queue all currently-known items for writing to the stream as291

soon as the connection is opened. The interface’s documentation should specify292

whether this is done or not.293

In interfaces where the provider is stateless and has “carousel10” behaviour, the294

consumer may cache past items/events in memory or on disk for as long as they295

are considered valid.296

Similarly, if a provider that receives items from a carousel implements an inter-297

face that expects it to store state, the provider may cache past items/events in298

memory or on disk for as long as they are considered valid, so that they can be299

provided to the consumer.300

9https://martyn.pages.apertis.org/apertis-website/concepts/interface_discovery/
10https://en.wikipedia.org/wiki/Data_and_object_carousel

9

https://martyn.pages.apertis.org/apertis-website/concepts/interface_discovery/
https://en.wikipedia.org/wiki/Data_and_object_carousel
https://martyn.pages.apertis.org/apertis-website/concepts/interface_discovery/
https://en.wikipedia.org/wiki/Data_and_object_carousel

	Use cases
	Selecting an initiator
	Discovery
	Connection
	Communication
	Publish/subscribe via D-Bus
	Query-based access via D-Bus
	Provider-initiated push via D-Bus
	Consumer-initiated pull via a stream
	Provider-initiated push via a stream
	Bidirectional communication via D-Bus
	Bidirectional communication via a socket or pair of pipes

	Resuming communication
	Stored state

