
Apertis secure boot

Contents1

Boot sequence 22

Secure boot sequence 33

Threat models 44

offline attacks . 45

online attacks . 56

Signing and signing infrastructure 57

Apertis secure boot integration 68

Apertis secure boot implementation steps 69

SabreLite secure boot preparation 710

Secure boot in the U-Boot package for Sabrelite 911

Sign U-Boot bootloader such that the ROM can verify 912

Sign U-Boot bootloader for loading via USB serial downloader 1013

Sign kernel images for U-Boot to load 1114

FIT image creation . 1115

Signing the FIT image . 1216

Signing bootloader and kernel from the image build pipeline 1417

U-Boot signing . 1518

FIT image creation and signing . 1519

As next steps the following could be undertaken: 1620

For both privacy and security reasons it is important for modern devices to21

ensure that the software running on the device hasn’t been tampered with. In22

particular any tampering with software early in the boot sequence will be hard to23

detect later while having a big amount of control over the system. To solve this24

issues various vendors and consortiums have created technologies to combat this,25

known under names as “secure boot”, “highly assured boot” (NXP), “verified26

boot” (Google Android/ChromeOS).27

While the scope and implementation details of these technologies differs the28

approach to provide a trusted boot chain tends to be similar between all of29

them. This document discusses how that aspect of the various technologies30

works on a high-level and how this can be introduced into Apertis.31

2

Boot sequence32

To understand how secure boot works first one has to understand how booting33

works. From a high-level perspective a CPU is a very simple beast, it needs34

to be pointed at a stream of instructions (code) which it will then be able to35

execute. Without instructions a CPU cannot do anything. The instructions also36

need to be in a region of memory which the CPU can access. However when a37

device is powered on the code that is meant to be run on it (e.g. Linux) will not38

be in memory yet. To make matters worse on power on main memory (Dynamic39

RAM) will not even be accessible by the CPU yet! To solve this problem some40

bootstrapping is required, typically referred to as booting the system.41

The very first step in the boot process after power on is to get the CPU to start42

executing some instructions. As the CPU cannot load instructions without43

running instructions these first instructions are hardwired into the SoC directly44

with the CPU is hardwired to start executing those when powers comes on.45

This hardwired piece of code is often referred to as the ROM or romcode.46

The job of the romcode is to do very basic SoC setup and load further code47

to execute. To allow the romcode to do its job, it will have access to a small48

amount of static RAM (SRAM, typically 64 to 128 kilobyte). The locations from49

where the ROM code can load is system specific. On most modern ARM-based50

systems this will include at least (SPI-connected) flash (NAND/NOR), eMMC51

cards, SD cards, serial ports etc. Most systems can only have code loaded52

over USB initially while some can even load code directly over the network via53

bootp!. The details of the format the code needs to be in (e.g. specific headers),54

how the code is presented (e.g. specific offsets on the eMMC) is very system55

specific. Once romcode managed to load the code from one of its supported56

location into SRAM execution of that code will start, which will the first time57

user supplied code is actually ran on the device.58

This next step is known under various different names such as Boot Loader stage59

1(BL1), Secondary Program Loader(SPL), Tertiary Program Loader(TPL), etc.60

The code for this stage must be quite small as only SRAM is available at this61

stage. The goal for this step is normally to initialize Dynamic RAM (e.g. run62

DDR memory training) followed by loading the next step into DRAM and ex-63

ecuting it (which can be far bigger now that DRAM is available). Depending64

on the system this stage may also provide initial user feedback that the system65

is booting (e.g. display a first splash image, turning an LED on etc), but that66

purely depends on the overall system design and available space.67

What the next step of executed code is more system specific. In some cases it can68

directly be Linux, in some cases it will be a bootloader with more functionality69

(as all of main memory is now available) and in some cases it will be multiple70

loader steps. As an example of the last case for devices using ARM Trusted71

Firmware there will typically be follow-on steps to load the secure firmware (such72

3

as OP-TEE1) followed by a non-secure world bootloader which loads Linux. For73

those interested the various images used in an ATF setup can be found here2.74

Linux starting up typically is the last phase of the boot process. For Linux to75

start the previous stage will have loaded a kernel image, optionally a initramfs76

and optionally a devicetree into main memory. The combination of these will77

load the root filesystem at which point userspace (e.g. applications) will start78

running.79

Note that while the above is a simple view on the basic boot process, the overall80

flow will be the same on all systems (both ARM and non-ARM devices). For81

the above we also implicitly assumed that only one CPU is booted, for some82

more complex systems multiple CPUs (e.g. main application processors and83

various co-processors) might be booted. It may even be the case that all the84

early stages are done by a co-processor which takes care of loading the first code85

and starting the main processor. The overall description is also valid for system86

with hypervisors, essentially the hypervisor is just another stage in the boot87

sequence and will load/start the code for each of the cells it runs.88

For this document we’ll only look at securing the booting of the main (Linux89

running) processor without a hypervisor.90

Secure boot sequence91

The main objective for a secure boot process is to ensure all code that gets92

executed by the processor is trusted. As each of the stages described in the93

previous section is responsible for loading the code for the next stage the solution94

for that is relatively straight-forward. Apart from loading the next stage of code,95

each stage also needs to verify the code it has loaded. Typically this is done by96

some signature verification mechanism.97

The ROM step is normally assumed to be fully trusted as it’s hard-wired into the98

SoC and cannot be replaced. How the ROM is configured and how it validates99

the next stage is highly device specific. Later steps can do the verification either100

by calling back into ROM code (thus re-using the same mechanisms as the ROM)101

or by pure software implementation (making it more consistent between different102

devices).103

In all cases to support this, apart from device specific configuration, all boot104

stages need to be appropriately signed. Luckily this is typically based on stan-105

dard mechanisms such as RSA keys and X.509 Certificates.106

Once Linux starts the approach has to be different as it’s not feasible in most107

systems to fully verify all of the root filesystem at boot time as this simply108

1https://martyn.pages.apertis.org/apertis-website/concepts/op-tee/
2https://trustedfirmware-a.readthedocs.io/en/latest/getting_started/image-terminology.

html

4

https://martyn.pages.apertis.org/apertis-website/concepts/op-tee/
https://trustedfirmware-a.readthedocs.io/en/latest/getting_started/image-terminology.html
https://martyn.pages.apertis.org/apertis-website/concepts/op-tee/
https://trustedfirmware-a.readthedocs.io/en/latest/getting_started/image-terminology.html
https://trustedfirmware-a.readthedocs.io/en/latest/getting_started/image-terminology.html

would take far too long. As such the form of protection described thus far only109

gets applied up to the point the Linux kernel starts loading.110

Threat models111

To understand what a secure boot system really secures it’s important to look112

at the related threat models. As a first step we can distinguish between offline113

(device is turned off) and online attacks (device powered on).114

For these considerations the assumption is made all boot steps work as intended.115

As with any software security vulnerabilities can invalidate the protection given.116

While in most cases these can be patches as issues become known, for ROM code117

this is impossible without a hardware change.118

offline attacks119

• Attack: Replace any of the boot stages on device storage (physical access120

required)121

• Impact: Depending on the boot stage the attacker can get full control of122

the device for each following boot.123

• Mitigation: Assuming each stage correctly validates the next boot stage,124

any tampering with loaded code will be detected and prevented (e.g. de-125

vice fails to boot).126

• Attack: Trigger the device to load software from external means (e.g. USB127

or serial) under the attackers control.128

• Impact: Depending on the boot stage the attacker can get full control of129

the device.130

• Mitigation: The ROM or any stage that loads from an external source131

should use the same verification as for any on device stages. However for132

production use, if possible, loading software from external source should133

be disabled.134

• Attack: Replace or add binaries on the systems root filesystem135

• Impact: Full control of the device as far as the kernel allows.136

• Mitigation: No protection from the above mechanisms.137

online attacks138

• Attack: Gain enough access to replace any of the boot stages on device139

storage140

• Impact: Depending on the boot stage the attacker can get full control of141

the device for each following boot.142

5

• Mitigation: Assuming each stage correctly validates the next boot stage,143

any tampering with loaded code will be detected and prevented (e.g. de-144

vice fails to boot).145

• Attack: Replace or add binaries on the systems root filesystem146

• Impact: Full control of the device as far as the kernel allows.147

• Mitigation: No protection from the above mechanisms.148

Signing and signing infrastructure149

To securely boot a device it is assumed all the various boot stages have some150

kind of signature which can be validate by previous stages. Which by extension151

also means the protection is only as strong as the signature; if an attacker can152

sign code under their control with a signature that is valid (or seen as valid)153

for the verifying step all protection is lost. This means that special care has to154

be taken with respect to key handling to ensure signing keys are kept with the155

right amount of security depending on their intended use.156

For development usage and devices a low amount of security is ok in most cases,157

the intention in the development stage is for developers to be easily able to run158

their own code and by extension should be able to sign their own builds with159

minimal effort.160

For production devices however the requirements should be much more strict161

as unauthorized of control of a signing key can allow attackers to defeat the162

intended protection by secure boot. Furthermore production devices should163

typically not be allowed to run development builds as those tend to enable164

extra access for debugging and development reasons which tend to be a great165

attack vector.166

For these reason it’s recommendable to have at least two different sets of signing167

keys, one for development usage and one for production use. Development keys168

can be kept with low security or even be publicly available, while production169

keys should only be used to sign final production images and managed by a170

hardware security module (HSM) for secure storage. To allow the usage of a171

commercially available HSMs it’s recommended for the signing process to be172

able to support the PKCS#11 standard3.173

Note that in case security keys do get lost/stolen/etc it is possible for some174

devices to revoke or update the valid set of keys. However this can be quite175

limited e.g. on i.MX6 device one can one-time program up to four acceptable176

keys and each of those can be flagged as revoked, but it’s impossible to add177

more or replace any keys.178

3https://en.wikipedia.org/wiki/PKCS_11

6

https://en.wikipedia.org/wiki/PKCS_11
https://en.wikipedia.org/wiki/PKCS_11

Apertis secure boot integration179

Integrating secure boot into Apertis really exists out of two parts. The first part180

is to ensure all boot stages have the ability to verify. The second part is to be181

able to sign all the boot stages as part of the Apertis image building process.182

While the actual implementation details of both will be system/hardware/SoC183

specific the impact of this is generic for all.184

As Apertis images are composed out of pre-build binary packages the package185

delivering the implementation for the various boot stages should either provide186

a build which will always enforce signature verification or the implementation187

should detect if the device is configured for secure boot and only enforce in that188

situation. Enforcing on demand has the benefit that it makes it easier to test189

the same builds on non-secure devices (though care must be taken that secure190

boot status cannot be faked).191

For the signing of the various stages this needs to be done at image build time192

such that the signing key can be chosen based on the target. For example193

whether it’s a final production build or a development build or even a production194

build to test on development devices. This in turn means that the signing tools195

and implementation need to support signing outside the build process which is196

normally supported.197

Apertis secure boot implementation steps198

As the whole process is somewhat device specific implementation of a secure199

boot flow for Apertis should be done on a device per device basis. The best200

starting point is is most likely the NXP i.MX6 sabrelite reference board as the201

secure boot process (Highly Assured Boot in NXP terms) is both well-known202

and well supported by upstream components. Furthermore an initial PoC for203

the early boot stages was already done for the NXP Sabre Auto boards which204

are based on the same SoC.205

SabreLite secure boot preparation206

The good introduction into HAB (High Assurance Boot)4 is prepared by Bound-207

ary Devices, also there are some documentation5 and examples in U-Boot source208

tree.209

The NXP Code Signing Tool6 is needed to create keys, certificates and SRK210

hashes used during the signing process – please refer to section 3.1.3 of CST211

4https://boundarydevices.com/high-assurance-boot-hab-dummies/
5https://github.com/u-boot/u-boot/blob/master/doc/imx/habv4/introduction_habv4.

txt
6https://gitlab.apertis.org/pkg/imx-code-signing-tool

7

https://boundarydevices.com/high-assurance-boot-hab-dummies/
https://github.com/u-boot/u-boot/blob/master/doc/imx/habv4/introduction_habv4.txt
https://gitlab.apertis.org/pkg/imx-code-signing-tool
https://gitlab.apertis.org/pkg/imx-code-signing-tool/-/blob/apertis/v2021dev2/docs/CST_UG.pdf
https://gitlab.apertis.org/pkg/imx-code-signing-tool/-/blob/apertis/v2021dev2/docs/CST_UG.pdf
https://gitlab.apertis.org/pkg/imx-code-signing-tool/-/blob/apertis/v2021dev2/docs/CST_UG.pdf
https://github.com/u-boot/u-boot/blob/master/doc/imx/habv4/introduction_habv4.txt
https://github.com/u-boot/u-boot/blob/master/doc/imx/habv4/introduction_habv4.txt
https://gitlab.apertis.org/pkg/imx-code-signing-tool

User’s Guide7. Apertis reference images use the public git repository8 with all212

secrets available, so it could be used for signing binaries during development213

in case if board has been fused with Apertis SRK hash (irreversible opera-214

tion!!!).215

Caution: the SabreLite board can be fused with the SRK (Super Root Key)216

hash only once!217

To fuse the Apertis SRK hash9 we have to have the hexadecimal dump of the218

hash of the key. Command below will produce the output with commands for219

Apertis SRK hash fusing:220

$ hexdump -e '/4 "0x"' -e '/4 "%X""\n"' SRK_1_2_3_4_fuse.bin | for i in `seq 0 7`; do read h; echo fuse prog -221

y 3 $i $h; done222

This command generates the list of commands to be executed in a U-Boot CLI.223

For Apertis SRK hash fusing they are:224

fuse prog -y 3 0 0xFD415383225

fuse prog -y 3 1 0x519690F5226

fuse prog -y 3 2 0xE844EB48227

fuse prog -y 3 3 0x179B1826228

fuse prog -y 3 4 0xEC0F8D7C229

fuse prog -y 3 5 0x2F209598230

fuse prog -y 3 6 0x9A98BE3231

fuse prog -y 3 7 0xAAD9B3D6232

After execution of commands above only Apertis development keys10 can be233

used for signing the U-Boot binary.234

The i.MX6 ROM does signature verification of the bootloader during startup,235

and depending on the configured (fused) mode the behaviour is different. The236

i.MX6 device may work in 2 modes:237

• “open” – the HAB ROM allows the use of unsigned bootloaders or boot-238

loaders signed with any key, without checking its validity. In case of239

errors, it will only generate HAB secure events on boot without halting240

the process. This mode is useful for development.241

• “closed” – only signed with correct key U-Boot may be started, any incor-242

rectly signed bootloader will not be started. This mode should be used243

only for final product.244

It is highly recommended not to use “closed” mode for development245

boards!246

7https://gitlab.apertis.org/pkg/imx-code-signing-tool/-/blob/apertis/v2021dev2/docs/
CST_UG.pdf

8https://gitlab.apertis.org/infrastructure/apertis-imx-srk
9https://gitlab.apertis.org/infrastructure/apertis-imx-srk/-/blob/master/SRK_1_2_3_

4_fuse.bin
10https://gitlab.apertis.org/infrastructure/apertis-imx-srk/

8

https://gitlab.apertis.org/infrastructure/apertis-imx-srk
https://gitlab.apertis.org/infrastructure/apertis-imx-srk/-/blob/master/SRK_1_2_3_4_fuse.bin
https://gitlab.apertis.org/infrastructure/apertis-imx-srk/
https://gitlab.apertis.org/pkg/imx-code-signing-tool/-/blob/apertis/v2021dev2/docs/CST_UG.pdf
https://gitlab.apertis.org/pkg/imx-code-signing-tool/-/blob/apertis/v2021dev2/docs/CST_UG.pdf
https://gitlab.apertis.org/infrastructure/apertis-imx-srk
https://gitlab.apertis.org/infrastructure/apertis-imx-srk/-/blob/master/SRK_1_2_3_4_fuse.bin
https://gitlab.apertis.org/infrastructure/apertis-imx-srk/-/blob/master/SRK_1_2_3_4_fuse.bin
https://gitlab.apertis.org/infrastructure/apertis-imx-srk/

To check if your device is booted with correctly signed bootloader, and SRK247

key is fused, just type this in the U-Boot CLI:248

=> hab_status249

250

Secure boot enabled251

252

HAB Configuration: 0xcc, HAB State: 0x99253

No HAB Events Found!254

The output shows if the device is in “closed” mode (secure boot enabled) and255

booted without any security errors.256

In case of errors in “open” mode the same command will show the list of HAB257

events similar to:258

--------- HAB Event 5 -----------------259

event data:260

0xdb 0x00 0x14 0x41 0x33 0x21 0xc0 0x00261

0xbe 0x00 0x0c 0x00 0x03 0x17 0x00 0x00262

0x00 0x00 0x00 0x50263

264

STS = HAB_FAILURE (0x33)265

RSN = HAB_INV_CERTIFICATE (0x21)266

CTX = HAB_CTX_COMMAND (0xC0)267

ENG = HAB_ENG_ANY (0x00)268

During Linux kernel verification it is possible to emulate the “closed” mode with269

fuse override command and proceed with the boot:270

=> fuse override 0 6 0x2271

=> run bootcmd272

Note: the only issue with closed mode emulation – the device will accept kernel273

signed with any key, but HAB events will be generated and shown in that case.274

To close a device you need to fuse the same values used for overriding.275

Caution: the board can only use bootloaders signed with the Apertis develop-276

ment key after the step below! This is irreversible operation:277

=> fuse prog 0 6 0x2278

Secure boot in the U-Boot package for Sabrelite279

The U-Boot bootloader must be configured with the option CONFIG_SECURE_BOOT280

to enable support of HAB (High Assurance Boot) support on i.MX6 platform.281

Upstream U-Boot has no protection based on the HAB engine to prevent exe-282

cuting unsigned binaries. Verified boot with the usage of HAB ROM is enabled283

9

in U-Boot for Apertis only for FIT (Flattened uImage Tree)11 format since it284

allows to embed Linux kernel, initramfs and DTB into a single image. Hence285

the support of FIT images must be enabled in U-Boot configuration by option286

CONFIG_FIT.287

The patch series12 enables verification of FIT image prior to execution of the288

Linux kernel. Patched U-Boot do verification of the whole FIT binary prior289

to extraction kernel and initramfs images, and this ensures that only verified290

initial system will be started.291

All other format types like zImage, as well as other boot methods are prohibited292

on fully secured device when “closed” mode is enabled or emulated.293

Sign U-Boot bootloader such that the ROM can294

verify295

To sign the U-Boot for SabreLite we need cst tool installed in the system and296

the Apertis development keys repository13 need to be checked out. Please use297

the csf/csf_uboot.txt14 file as a template for your U-Boot binary.298

U-Boot for SabreLite board doesn’t use SPL, hence the whole u-boot.imx binary299

must be signed. With enabled CONFIG_SECURE_BOOT option the build log will300

contain following output (and file u-boot.imx.log as well):301

Image Type: Freescale IMX Boot Image302

Image Ver: 2 (i.MX53/6/7 compatible)303

Mode: DCD304

Data Size: 606208 Bytes = 592.00 KiB = 0.58 MiB305

Load Address: 177ff420306

Entry Point: 17800000307

HAB Blocks: 0x177ff400 0x00000000 0x00091c00308

DCD Blocks: 0x00910000 0x0000002c 0x00000310309

we need values from the string started with “HAB Blocks:”. Those values must310

be used in “[Authenticate Data]” section of template15:311

[Authenticate Data]312

Verification index = 2313

Blocks = 0x177ff400 0x00000000 0x00091C00 "u-boot.imx"314

To sign the U-Boot with cst tool simply call:315

11https://github.com/u-boot/u-boot/blob/master/doc/uImage.FIT/source_file_format.
txt

12https://gitlab.apertis.org/pkg/u-boot/-/merge_requests/4
13https://gitlab.apertis.org/infrastructure/apertis-imx-srk
14https://gitlab.apertis.org/infrastructure/apertis-imx-srk/-/blob/master/csf/csf_uboot.

txt
15https://gitlab.apertis.org/infrastructure/apertis-imx-srk/-/blob/master/csf/csf_uboot.

txt

10

https://github.com/u-boot/u-boot/blob/master/doc/uImage.FIT/source_file_format.txt
https://gitlab.apertis.org/pkg/u-boot/-/merge_requests/4
https://gitlab.apertis.org/infrastructure/apertis-imx-srk
https://gitlab.apertis.org/infrastructure/apertis-imx-srk/-/blob/master/csf/csf_uboot.txt
https://gitlab.apertis.org/infrastructure/apertis-imx-srk/-/blob/master/csf/csf_uboot.txt
https://github.com/u-boot/u-boot/blob/master/doc/uImage.FIT/source_file_format.txt
https://github.com/u-boot/u-boot/blob/master/doc/uImage.FIT/source_file_format.txt
https://gitlab.apertis.org/pkg/u-boot/-/merge_requests/4
https://gitlab.apertis.org/infrastructure/apertis-imx-srk
https://gitlab.apertis.org/infrastructure/apertis-imx-srk/-/blob/master/csf/csf_uboot.txt
https://gitlab.apertis.org/infrastructure/apertis-imx-srk/-/blob/master/csf/csf_uboot.txt
https://gitlab.apertis.org/infrastructure/apertis-imx-srk/-/blob/master/csf/csf_uboot.txt
https://gitlab.apertis.org/infrastructure/apertis-imx-srk/-/blob/master/csf/csf_uboot.txt

cst -i csf_uboot.txt -o csf_uboot.bin316

File csf_uboot.bin will contain signatures which should be appended to original317

u-boot.imx binary:318

cat u-boot.imx csf_uboot.bin > u-boot.imx.signed319

Sign U-Boot bootloader for loading via USB serial down-320

loader321

In case if something goes wrong and the system does not boot anymore it322

is still possible to boot with the help of USB serial downloaders16, such as323

imx_usb_loader or uuu.324

However the U-Boot must be signed in a slightly different way since some325

changes are done by ROM in runtime while loading binary. Please refer to326

section “What about imx_usb_loader?” of High Assurance Boot (HAB) for327

dummies17 document.328

The template csf_uboot.txt18 for signing U-Boot to be loaded over serial down-329

loader protocol should contain additional block in “[Authenticate Data]” section:330

[Authenticate Data]331

Verification index = 2332

Blocks = 0x177ff400 0x00000000 0x00091C00 "u-boot.imx", \333

0x00910000 0x0000002c 0x00000310 "u-boot.imx"334

With the help of mod_4_mfgtool.sh19 script we need to store and restore DCD335

address from original u-boot.imx in addition to signing:336

sh mod_4_mfgtool.sh clear_dcd_addr u-boot.imx337

cst -i csf_uboot.txt -o csf_uboot.bin338

sh mod_4_mfgtool.sh set_dcd_addr u-boot.imx339

cat u-boot.imx csf_uboot.bin > u-boot.imx.signed_usb340

Sign kernel images for U-Boot to load341

After the successful startup of U-Boot we need to load the Linux kernel,342

initramfs and DTB file into the memory. All these bits must be verified before343

transferring control to the kernel. With FIT (Flattened uImage Tree)20 format344

we can use single signed image with kernel, initramfs and DTB embedded, and345

16https://community.nxp.com/docs/DOC-95604
17https://boundarydevices.com/high-assurance-boot-hab-dummies/
18https://gitlab.apertis.org/infrastructure/apertis-imx-srk/-/blob/master/csf/csf_uboot.

txt
19https://storage.googleapis.com/boundarydevices.com/mod_4_mfgtool.sh
20https://github.com/u-boot/u-boot/blob/master/doc/uImage.FIT/source_file_format.

txt

11

https://community.nxp.com/docs/DOC-95604
https://boundarydevices.com/high-assurance-boot-hab-dummies/
https://boundarydevices.com/high-assurance-boot-hab-dummies/
https://boundarydevices.com/high-assurance-boot-hab-dummies/
https://gitlab.apertis.org/infrastructure/apertis-imx-srk/-/blob/master/csf/csf_uboot.txt
https://storage.googleapis.com/boundarydevices.com/mod_4_mfgtool.sh
https://github.com/u-boot/u-boot/blob/master/doc/uImage.FIT/source_file_format.txt
https://community.nxp.com/docs/DOC-95604
https://boundarydevices.com/high-assurance-boot-hab-dummies/
https://gitlab.apertis.org/infrastructure/apertis-imx-srk/-/blob/master/csf/csf_uboot.txt
https://gitlab.apertis.org/infrastructure/apertis-imx-srk/-/blob/master/csf/csf_uboot.txt
https://storage.googleapis.com/boundarydevices.com/mod_4_mfgtool.sh
https://github.com/u-boot/u-boot/blob/master/doc/uImage.FIT/source_file_format.txt
https://github.com/u-boot/u-boot/blob/master/doc/uImage.FIT/source_file_format.txt

this allows to avoid “mix and match” attacks with mixed versions of kernel,346

initramfs, DTB and configuration.347

The signing procedure for kernel images is split into 2 parts:348

• preparation of the kernel image in FIT format349

• sign FIT image350

FIT image creation351

U-Boot documentation21 contains a lot of details and examples how to create352

FIT images for different purposes.353

To embed all bits into the single FIT image we need to prepare file in image tree354

source format, for Apertis we use simple template22 containing configuration355

with 3 entries for kernel, initramfs and DTB respectively. So values {{kernel}},356

{{ramdisk}} and {{dtb}} should be substituted with absolute or relative path to357

corresponding files.358

Please pay attention to addresses in load fields, since the whole FIT image is359

loaded into the memory by address 0x12000000 (check the value of kernel_addr_r360

in U-Boot environment), it is important to avoid intersections with embedded361

binaries since they will be copied to configured memory regions after successful362

verification.363

To create the FIT image you need to have mkimage command from the package364

u-boot-tools compiled with FIT support. With FIT source file prepared just365

run mkimage and generate the FIT binary:366

$ mkimage -f vmlinuz.its vmlinuz.itb367

FIT description: Apertis armhf kernel with dtb and initramfs368

Created: Fri Mar 13 02:23:33 2020369

Image 0 (kernel-0)370

Description: Linux Kernel371

Created: Fri Mar 13 02:23:33 2020372

Type: Kernel Image373

Compression: uncompressed374

Data Size: 4526592 Bytes = 4420.50 KiB = 4.32 MiB375

Architecture: ARM376

OS: Linux377

Load Address: 0x10800000378

Entry Point: 0x10800000379

Hash algo: sha1380

Hash value: 8a64994bdab06d01450560ea229c9f44f1f0af14381

Image 1 (ramdisk-0)382

Description: ramdisk383

21https://github.com/u-boot/u-boot/tree/master/doc/uImage.FIT
22https://gitlab.apertis.org/infrastructure/apertis-image-recipes/-/blob/apertis/

v2021dev1/sign/imx6/fit_image.template

12

https://github.com/u-boot/u-boot/tree/master/doc/uImage.FIT
https://gitlab.apertis.org/infrastructure/apertis-image-recipes/-/blob/apertis/v2021dev1/sign/imx6/fit_image.template
https://github.com/u-boot/u-boot/tree/master/doc/uImage.FIT
https://gitlab.apertis.org/infrastructure/apertis-image-recipes/-/blob/apertis/v2021dev1/sign/imx6/fit_image.template
https://gitlab.apertis.org/infrastructure/apertis-image-recipes/-/blob/apertis/v2021dev1/sign/imx6/fit_image.template

Created: Fri Mar 13 02:23:33 2020384

Type: RAMDisk Image385

Compression: uncompressed386

Data Size: 20285185 Bytes = 19809.75 KiB = 19.35 MiB387

Architecture: ARM388

OS: Linux389

Load Address: 0x15000000390

Entry Point: unavailable391

Hash algo: sha1392

Hash value: c12652573d1b301b191cf3e2a318913afc1ae4b7393

Image 2 (fdt-0)394

Description: Flattened Device Tree blob395

Created: Fri Mar 13 02:23:33 2020396

Type: Flat Device Tree397

Compression: uncompressed398

Data Size: 42366 Bytes = 41.37 KiB = 0.04 MiB399

Architecture: ARM400

Hash algo: sha1401

Hash value: ace0dd1dea00568b1c4e6df3fb0420c912e3e091402

Default Configuration: 'conf-0'403

Configuration 0 (conf-0)404

Description: Boot Apertis405

Kernel: kernel-0406

Init Ramdisk: ramdisk-0407

FDT: fdt-0408

Hash algo: sha1409

Hash value: unavailable410

CSF Processed successfully and signed data available in vmlinuz.itb411

Signing the FIT image412

Now it is time to sign the produced image. The procedure is similar to signing413

U-Boot with additional step – we need to add the IVT (Image Vector Table) for414

the kernel image. We skip this step for U-Boot since it is prepared automatically415

during the build of the bootloader.416

The IVT is needed for the HAB ROM and must be the part of the binary, it417

should be aligned to 0x1000 boundary. For instance, if the produced binary is:418

$ stat -c "%s" vmlinuz.itb419

25555173420

we need to pad the file to nearest aligned value, which is 25559040:421

$ objcopy -I binary -O binary --pad-to=25559040 --gap-fill=0x00 vmlinuz.itb vmlinuz-422

pad.itb423

The next step is IVT generation for the FIT image and the easiest method is424

13

to use the genIVT script23 provided by Boundary Devices with adaptation for425

padded FIT image:426

• Jump Location – 0x12000000 Here we expect the image will be loaded by427

U-Boot428

• Self Pointer – 0x13860000 (Jump Location + size of padded image) Pointer429

to the IVT table itself, which will place after padded image430

• CSF Pointer – 0x13860020 (Jump Location + size of padded image + size431

of IVT) Pointer to signature data, which we will add after IVT432

So, the IVT generation is pretty simple:433

$ perl genIVT434

it will generate the binary named ivt.bin to be added to the image:435

$ cat vmlinuz-pad.itb ivt.bin > vmlinuz-pad-ivt.itb436

We need to prepare the config file for signing the padded FIT image with IVT.437

This step is absolutely the same as for U-Boot signing.438

Configuration file for FIT image is created from template csf_uboot.txt24, and439

values in [Authenticate Data] section must be the same as used for IVT calcula-440

tion – Jump Location and the size of generated file:441

[Authenticate Data]442

Verification index = 2443

Authenticate Start Address, Offset, Length and file444

Blocks = 0x12000000 0x00000000 0x1860020 "vmlinuz-pad-ivt.itb"445

At last we are able to sign the prepared FIT image:446

$ cst -i vmlinuz-pad-ivt.csf -o vmlinuz-pad-ivt.bin447

CSF Processed successfully and signed data available in vmlinuz-pad-ivt.bin448

Signing bootloader and kernel from the image449

build pipeline450

Starting with v2021dev1 Apertis uses single signed FIT kernel image for OSTree-451

based systems. The signed version of U-Boot is a part of U-Boot installer.452

For signing binaries with the cst tool we need some files from the Apertis devel-453

opment keys25 git repository. The minimal working setup should include only454

6 files:455

• SRK_1_2_3_4_table.bin – Super Root Keys table456

• key_pass.txt – file with password457

23https://storage.googleapis.com/boundarydevices.com/genIVT
24https://gitlab.apertis.org/infrastructure/apertis-imx-srk/-/blob/master/csf/csf_uboot.

txt
25https://gitlab.apertis.org/infrastructure/apertis-imx-srk

14

https://storage.googleapis.com/boundarydevices.com/genIVT
https://gitlab.apertis.org/infrastructure/apertis-imx-srk/-/blob/master/csf/csf_uboot.txt
https://gitlab.apertis.org/infrastructure/apertis-imx-srk
https://gitlab.apertis.org/infrastructure/apertis-imx-srk
https://gitlab.apertis.org/infrastructure/apertis-imx-srk
https://storage.googleapis.com/boundarydevices.com/genIVT
https://gitlab.apertis.org/infrastructure/apertis-imx-srk/-/blob/master/csf/csf_uboot.txt
https://gitlab.apertis.org/infrastructure/apertis-imx-srk/-/blob/master/csf/csf_uboot.txt
https://gitlab.apertis.org/infrastructure/apertis-imx-srk

• CSF certificate and key in PEM format458

• IMG certificate and key in PEM format459

In addition we need a template for the FIT source file and CSF template suitable460

for signing U-Boot and FIT kernel.461

All files listed above are added into the git repository inside sign/imx626 subdi-462

rectory. Since all secrets for Apertis are public we are able to use them directly463

from the repo. However this is not acceptable for production.464

Fortunately the most of CI tools have possibility to add files as secrets available465

only on several steps. Hence we add “private” keys and password file as “Secret466

file” global credentials to demonstrate the integration into the Jenkins pipeline:467

468

For keys usage they should be available during the call of cst tool, so we have to469

add into the Jenkins pipeline copying of these secret files with the same names470

as used in CSF template27 and remove them after the usage.471

For instance the simple secrets copying for Jenkins:472

withCredentials([file(credentialsId: csf_csf_key, variable: 'CSF_CSFKEY'),473

file(credentialsId: csf_img_key, variable: 'CSF_IMGKEY'),474

file(credentialsId: csf_key_pass, variable: 'CSF_PASSWD')]) {475

// Setup keys for cst tool from Jenkins secrets476

// Have to keep keys and password file near certificates477

sh(script: """478

cd ${WORKSPACE}/sign/imx6479

cp -af $CSF_CSFKEY ./480

cp -af $CSF_IMGKEY ./481

cp -af $CSF_PASSWD ./""")482

}483

U-Boot signing484

To sign the U-Boot the script scripts/sign-u-boot.sh28 has been added.485

It automatically generates the CSF configuration from the template486

sign/imx6/fit_image_csf.template29 and call the cst tool to sign the U-487

26https://gitlab.apertis.org/infrastructure/apertis-image-recipes/-/tree/apertis/
v2021dev1/sign/imx6

27https://gitlab.apertis.org/infrastructure/apertis-image-recipes/-/blob/apertis/
v2021dev1/sign/imx6/fit_image_csf.template

28https://gitlab.apertis.org/infrastructure/apertis-image-recipes/-/blob/apertis/
v2021dev1/scripts/sign-u-boot.sh

29https://gitlab.apertis.org/infrastructure/apertis-image-recipes/-/blob/apertis/
v2021dev1/sign/imx6/fit_image_csf.template

15

https://gitlab.apertis.org/infrastructure/apertis-image-recipes/-/tree/apertis/v2021dev1/sign/imx6
https://gitlab.apertis.org/infrastructure/apertis-image-recipes/-/blob/apertis/v2021dev1/sign/imx6/fit_image_csf.template
https://gitlab.apertis.org/infrastructure/apertis-image-recipes/-/blob/apertis/v2021dev1/scripts/sign-u-boot.sh
https://gitlab.apertis.org/infrastructure/apertis-image-recipes/-/blob/apertis/v2021dev1/sign/imx6/fit_image_csf.template
https://gitlab.apertis.org/infrastructure/apertis-image-recipes/-/tree/apertis/v2021dev1/sign/imx6
https://gitlab.apertis.org/infrastructure/apertis-image-recipes/-/tree/apertis/v2021dev1/sign/imx6
https://gitlab.apertis.org/infrastructure/apertis-image-recipes/-/blob/apertis/v2021dev1/sign/imx6/fit_image_csf.template
https://gitlab.apertis.org/infrastructure/apertis-image-recipes/-/blob/apertis/v2021dev1/sign/imx6/fit_image_csf.template
https://gitlab.apertis.org/infrastructure/apertis-image-recipes/-/blob/apertis/v2021dev1/scripts/sign-u-boot.sh
https://gitlab.apertis.org/infrastructure/apertis-image-recipes/-/blob/apertis/v2021dev1/scripts/sign-u-boot.sh
https://gitlab.apertis.org/infrastructure/apertis-image-recipes/-/blob/apertis/v2021dev1/sign/imx6/fit_image_csf.template
https://gitlab.apertis.org/infrastructure/apertis-image-recipes/-/blob/apertis/v2021dev1/sign/imx6/fit_image_csf.template

Boot binary.488

The script is called by the Debos recipe for the SabreLite U-Boot installer489

image30:490

- action: run491

description: Sign U-Boot492

script: scripts/sign-u-boot.sh "${ROOTDIR}/deb-binaries/usr/lib/u-493

boot/{{ $target }}/u-boot.imx"494

FIT image creation and signing495

The FIT image is more complex. So for Apertis we use 2 scripts:496

• the scripts/generate_signed_fit_image.py script31 is used for generation497

FIT image, padding, IVT calculation and signing. This script can be used498

standalone to automate all steps described in the section “Sign kernel499

images for U-Boot to load”500

• the scripts/generate_fit_image.sh script32 is a wrapper for the former pro-501

viding it the paths for kernel, initramfs and DTB to include them in the502

signed FIT image.503

The integration with the build pipeline happens after the kernel is installed by504

the OSTree commit recipe33 by adding the step below:505

- action: run506

description: Generate FIT image507

script: scripts/generate_fit_image.sh508

NB: this action must be done prior to ostree commit action to add the signed509

FIT kernel into OSTree repository for OTA upgrades.510

As next steps the following could be undertaken:511

• Integration of PCKS#11 support in the signing process to support HSM512

devices513

• Automated testing of secure boot if possible514

30https://gitlab.apertis.org/infrastructure/apertis-image-recipes/-/blob/apertis/
v2021dev1/mx6qsabrelite-uboot-installer.yaml

31https://gitlab.apertis.org/infrastructure/apertis-image-recipes/-/blob/apertis/
v2021dev1/scripts/generate_signed_fit_image.py

32https://gitlab.apertis.org/infrastructure/apertis-image-recipes/-/blob/apertis/
v2021dev1/scripts/generate_fit_image.sh

33https://gitlab.apertis.org/infrastructure/apertis-image-recipes/-/blob/apertis/
v2021dev1/apertis-ostree-commit.yaml

16

https://gitlab.apertis.org/infrastructure/apertis-image-recipes/-/blob/apertis/v2021dev1/mx6qsabrelite-uboot-installer.yaml
https://gitlab.apertis.org/infrastructure/apertis-image-recipes/-/blob/apertis/v2021dev1/mx6qsabrelite-uboot-installer.yaml
https://gitlab.apertis.org/infrastructure/apertis-image-recipes/-/blob/apertis/v2021dev1/mx6qsabrelite-uboot-installer.yaml
https://gitlab.apertis.org/infrastructure/apertis-image-recipes/-/blob/apertis/v2021dev1/scripts/generate_signed_fit_image.py
https://gitlab.apertis.org/infrastructure/apertis-image-recipes/-/blob/apertis/v2021dev1/scripts/generate_fit_image.sh
https://gitlab.apertis.org/infrastructure/apertis-image-recipes/-/blob/apertis/v2021dev1/apertis-ostree-commit.yaml
https://gitlab.apertis.org/infrastructure/apertis-image-recipes/-/blob/apertis/v2021dev1/mx6qsabrelite-uboot-installer.yaml
https://gitlab.apertis.org/infrastructure/apertis-image-recipes/-/blob/apertis/v2021dev1/mx6qsabrelite-uboot-installer.yaml
https://gitlab.apertis.org/infrastructure/apertis-image-recipes/-/blob/apertis/v2021dev1/scripts/generate_signed_fit_image.py
https://gitlab.apertis.org/infrastructure/apertis-image-recipes/-/blob/apertis/v2021dev1/scripts/generate_signed_fit_image.py
https://gitlab.apertis.org/infrastructure/apertis-image-recipes/-/blob/apertis/v2021dev1/scripts/generate_fit_image.sh
https://gitlab.apertis.org/infrastructure/apertis-image-recipes/-/blob/apertis/v2021dev1/scripts/generate_fit_image.sh
https://gitlab.apertis.org/infrastructure/apertis-image-recipes/-/blob/apertis/v2021dev1/apertis-ostree-commit.yaml
https://gitlab.apertis.org/infrastructure/apertis-image-recipes/-/blob/apertis/v2021dev1/apertis-ostree-commit.yaml

	Boot sequence
	Secure boot sequence
	Threat models
	offline attacks
	online attacks

	Signing and signing infrastructure
	Apertis secure boot integration
	Apertis secure boot implementation steps
	SabreLite secure boot preparation
	Secure boot in the U-Boot package for Sabrelite
	Sign U-Boot bootloader such that the ROM can verify
	Sign U-Boot bootloader for loading via USB serial downloader

	Sign kernel images for U-Boot to load
	FIT image creation
	Signing the FIT image

	Signing bootloader and kernel from the image build pipeline
	U-Boot signing
	FIT image creation and signing

	As next steps the following could be undertaken:

