
Application layout

Contents1

Requirements . 22

Static files . 23

Variable files . 34

Upgrade, rollback, reset and uninstall 45

System extensions . 66

Security and privacy considerations 77

Miscellaneous . 78

Provisional recommendations . 89

Writing application bundles . 810

Implementation . 1211

Permissions and ownership . 1412

Physical layout . 1513

Installation and upgrading . 1614

Uninstallation . 1815

AppArmor profiles . 1916

Unresolved design questions . 1917

Are downloads rolled back? . 1918

Does data reset uninstall apps? 2019

Are inactive themes visible to all? 2020

Are built-in bundles visible to all? 2021

Standard icon sizes? . 2022

How do bundles discover the per-user, bundle-independent loca-23

tion? . 2024

Is g_get_home_dir() bundle-independent? 2025

Is g_get_temp_dir() bundle-independent? 2126

Is PICTURES per-user? . 2127

What is the scope of DESKTOP, DOCUMENTS, TEMPLATES? 2128

Unresolved implementation questions 2129

Can we prevent symlink attacks in shared directories? 2130

Should LD_LIBRARY_PATH be set? 2131

Alternative designs . 2232

Merge static and variable files for store applications 2233

Add a third subvolume per app-bundle for cache 2234

Each user’s files under their $HOME 2235

System integration links for services 2336

System services in app-bundles 2337

Appendix: application layout in Apertis 15.09 2438

Appendix: comparison with other systems 2639

Desktop Linux (packaged apps) 2640

Flatpak . 2741

Android . 2742

systemd “revisiting Linux systems” proposal 2843

References . 2844

Application bundles in the Apertis system may require several categories of45

2

storage, and to be able to write correct AppArmor profiles, we need to be able46

to restrict each of those categories of storage to a known directory.47

This document is intended to update and partially supersede discussions of48

storage locations in theapplications1 andsystem updates and rollback2 design49

documents.50

The Apertis Application Bundle Specification3 describes the files that can ap-51

pear in an application bundle and are expected to remain supported long-term.52

This document provides rationale for those categories of files, suggested future53

directions, and details of functionality that is not necessarily long-term stable.54

Requirements55

Static files56

• Most application bundles will contain one or more executable programs4,57

in the form of either compiled machine code or scripts. These are read-58

only and executable, and are updated when the bundle is updated (and59

at no other time).60

– Some of these programs are designed to be run directly by a user.61

These are traditionally installed in /usr/bin on Unix systems. Other62

programs are supporting programs, designed to be run internally63

by programs or libraries. These are traditionally installed in64

/usr/libexec (or sometimes /usr/lib) on Unix systems. Apertis65

does not require a technical distinction between these categories of66

program, but it would be convenient for them to be installed in a67

layout similar to the traditional one.68

• Application bundles that contain compiled executables may contain pri-69

vate shared libraries, in addition to those provided by the platform5, to70

support the executable. These are read-only ELF shared libraries, and are71

updated when the bundle is updated.72

– For example, Frampton6 has a private shared library libframptona-73

gentiface7 containing GDBus interfaces.74

• Application bundles may contain dynamically-loaded plugins (also known75

as loadable modules). These are also read-only ELF shared libraries.76

• Application bundles may contain static resource files such as .gresource77

1https://martyn.pages.apertis.org/apertis-website/concepts/applications/
2https://martyn.pages.apertis.org/apertis-website/concepts/system-updates-and-

rollback/
3https://martyn.pages.apertis.org/apertis-website/architecture/bundle-spec/
4https://martyn.pages.apertis.org/apertis-website/glossary/#program
5https://martyn.pages.apertis.org/apertis-website/glossary/#platform
6https://gitlab.apertis.org/appfw/frampton
7https://gitlab.apertis.org/appfw/frampton/tree/master/src/interface

3

https://martyn.pages.apertis.org/apertis-website/concepts/applications/
https://martyn.pages.apertis.org/apertis-website/concepts/system-updates-and-rollback/
https://martyn.pages.apertis.org/apertis-website/architecture/bundle-spec/
https://martyn.pages.apertis.org/apertis-website/glossary/#program
https://martyn.pages.apertis.org/apertis-website/glossary/#platform
https://gitlab.apertis.org/appfw/frampton
https://gitlab.apertis.org/appfw/frampton/tree/master/src/interface
https://gitlab.apertis.org/appfw/frampton/tree/master/src/interface
https://gitlab.apertis.org/appfw/frampton/tree/master/src/interface
https://martyn.pages.apertis.org/apertis-website/concepts/applications/
https://martyn.pages.apertis.org/apertis-website/concepts/system-updates-and-rollback/
https://martyn.pages.apertis.org/apertis-website/concepts/system-updates-and-rollback/
https://martyn.pages.apertis.org/apertis-website/architecture/bundle-spec/
https://martyn.pages.apertis.org/apertis-website/glossary/#program
https://martyn.pages.apertis.org/apertis-website/glossary/#platform
https://gitlab.apertis.org/appfw/frampton
https://gitlab.apertis.org/appfw/frampton/tree/master/src/interface

resource bundles, icons, fonts, or sample content. This are read-only, and78

are updated when the bundle is updated.79

– Where possible, application bundles should embed resources in the80

executable or library using GResource8. However, there are some81

situations in which this might not be possible, which will result in82

storing resource files in the filesystem:83

∗ if the application will load the resource via an API that is not84

compatible with GResource, but requires a real file85

∗ if the resource is extremely large86

∗ if the resource will be read by other programs, such as the icon87

that will be used by the app-launcher, the .desktop file describ-88

ing an entry point (used by Canterbury, Didcot etc.), or D-Bus89

service files (used by dbus-daemon)90

– If a separate .gresource file is used, for example for programs written91

in JavaScript or Python, then that file needs to be stored somewhere.92

• The AppArmor profile for an application bundle must allow that applica-93

tion bundle to read, mmap and execute its own static files.94

• The AppArmor profile for an application bundle must not allow that ap-95

plication bundle to write its own static files, because they are meant to be96

static. In particular, the AppArmor profile itself must not be modifiable.97

Variable files98

• The programs in application bundles may save variable data (configura-99

tion, state and/or cached files) for each user9 (Applications design - Data100

Storage10).101

– Configuration is any setting or preference for which there is a reason-102

able default value. If configuration is deleted, the expected result is103

that the user is annoyed by the preference being reset, but nothing104

important has been lost.105

– Cached files are files that have a canonical version stored elsewhere,106

and so can be deleted at any time without any effect, other than107

performance, resource usage, or limited functionality in the absence of108

an Internet connection. For example, a client for “tile map” services109

like Google Maps or OpenStreetMap should store map tiles in its110

cache directory. If cached files are deleted, the expected result is that111

the system is slower or less featureful until an automated process can112

refill the cache.113

– Non-configuration, non-cache data includes documents written by114

the user, database-like content such as a contact list or address115

book, license keys, and other unrecoverable data. It is usually con-116

8https://developer.gnome.org/gio/stable/GResource.html
9https://martyn.pages.apertis.org/apertis-website/glossary/#user

10https://martyn.pages.apertis.org/apertis-website/concepts/applications/#data-storage

4

https://developer.gnome.org/gio/stable/GResource.html
https://developer.gnome.org/gio/stable/GResource.html
https://developer.gnome.org/gio/stable/GResource.html
https://martyn.pages.apertis.org/apertis-website/glossary/#user
https://martyn.pages.apertis.org/apertis-website/concepts/applications/#data-storage
https://martyn.pages.apertis.org/apertis-website/concepts/applications/#data-storage
https://martyn.pages.apertis.org/apertis-website/concepts/applications/#data-storage
https://developer.gnome.org/gio/stable/GResource.html
https://martyn.pages.apertis.org/apertis-website/glossary/#user
https://martyn.pages.apertis.org/apertis-website/concepts/applications/#data-storage

sidered valuable to the user and should not be deleted, except on the117

user’s request. If non-configuration, non-cache data is unintention-118

ally deleted, the expected result is that the user will try to restore it119

from a backup.120

• The programs in application bundles may save variable data (configura-121

tion, state and/or cached files) that are shared between all users11 (Appli-122

cations design - Data storage12).123

• Newport needs to be able to write downloaded files to a designated direc-124

tory owned by the application bundle.125

– Because Newport is a platform service, its AppArmor profile will126

need to be allowed to write to all apps’ directories.127

– Because downloads might contain private information, Newport must128

download to a user- and bundle-specific location.129

• The AppArmor profile for an application bundle must allow that applica-130

tion bundle to read and write its own variable files.131

• The AppArmor profile for an application bundle should not allow that132

application bundle to execute its own variable files (“write xor execute”),133

making a broad class of arbitrary-code-execution vulnerabilities consider-134

ably more difficult to exploit.135

• Large media files such as music and videos should normally be shared136

between all users13 and all multimedia application bundles. (Multi-user137

design - Requirements14)138

Upgrade, rollback, reset and uninstall139

Store applications140

Suppose we have a store application bundle15, Shopping List version 23, which141

stores each user’s grocery list in a flat file. A new version 24 becomes available;142

this version stores each user’s grocery list in a SQLite database.143

• Shopping List can be installed and upgraded. This must be relatively144

rapid.145

• Before upgrade from version 23 to version 24, the system should make146

version 23 save its state and exit, terminating it forcibly if necessary,147

so that processes from version 23 do not observe version 24 files or any148

intermediate state, which would be likely to break their assumptions and149

cause a crash.150

– This matches the user experience seen on Android: graphical and151

background processes from an upgraded .apk are terminated during152

upgrade.153

11https://martyn.pages.apertis.org/apertis-website/glossary/#user
12https://martyn.pages.apertis.org/apertis-website/concepts/applications/#data-storage
13https://martyn.pages.apertis.org/apertis-website/glossary/#user
14https://martyn.pages.apertis.org/apertis-website/concepts/multiuser/#requirements
15https://martyn.pages.apertis.org/apertis-website/glossary/#store-application-bundle

5

https://martyn.pages.apertis.org/apertis-website/glossary/#user
https://martyn.pages.apertis.org/apertis-website/concepts/applications/#data-storage
https://martyn.pages.apertis.org/apertis-website/concepts/applications/#data-storage
https://martyn.pages.apertis.org/apertis-website/concepts/applications/#data-storage
https://martyn.pages.apertis.org/apertis-website/glossary/#user
https://martyn.pages.apertis.org/apertis-website/concepts/multiuser/#requirements
https://martyn.pages.apertis.org/apertis-website/concepts/multiuser/#requirements
https://martyn.pages.apertis.org/apertis-website/concepts/multiuser/#requirements
https://martyn.pages.apertis.org/apertis-website/glossary/#store-application-bundle
https://martyn.pages.apertis.org/apertis-website/glossary/#user
https://martyn.pages.apertis.org/apertis-website/concepts/applications/#data-storage
https://martyn.pages.apertis.org/apertis-website/glossary/#user
https://martyn.pages.apertis.org/apertis-website/concepts/multiuser/#requirements
https://martyn.pages.apertis.org/apertis-website/glossary/#store-application-bundle

• Before upgrade from version 23 to version 24, the system must take a copy154

(snapshot) of each user’s data for this application bundle.155

• After upgrade from version 23 to version 24, the current data will still be156

in the version 23 format (a flat file).157

• When a user runs version 24, the application bundle may convert the data158

to version 24 format if desired. This is the application author’s choice.159

• If a user rolls back Shopping List from version 24 to version 23, the system160

must restore the saved data from version 23 for each user. (Applications161

design16 §4.1.5, “Store Applications — Roll-back”)162

– This is because the application author might have chosen to use an163

incompatible format for version 24, as we have assumed here.164

– For simplicity, we do not require a way for application authors to165

avoid the data being rolled back.166

• Shopping List can be uninstalled. This must be relatively rapid. (Appli-167

cations design17 §4.1.4, “Store Applications — Removal”)168

• When Shopping List is uninstalled from the system, the system must169

remove all associated data, for all users.170

– If a multi-user system emulates a per-user choice of apps by hiding171

or showing apps separately on a per-user basis, it should delete user172

data at the expected time: if user 1 “uninstalls” Shopping List, but173

user 2 still wants it installed, the system may delete user 1’s data174

immediately.175

• To save space, cache files (defined to mean files that can easily be re-176

created, for example by downloading them) should not be included in177

snapshots. Instead of being rolled back, these files should be deleted during178

a rollback. (System Update and Rollback design18 §6.3, “Update and179

Rollback Procedure”)180

• Unresolved: Are downloads rolled back?181

Built-in applications182

By definition, built-in application bundles19 are part of the same filesystem183

image as the platform. They are upgraded and/or rolled back with the platform.184

Suppose platform version 2 has a built-in application bundle, Browser version185

17. A new platform version 3 becomes available, containing Browser version 18.186

16https://martyn.pages.apertis.org/apertis-website/concepts/applications/
17https://martyn.pages.apertis.org/apertis-website/concepts/applications/
18https://martyn.pages.apertis.org/apertis-website/concepts/system-updates-and-

rollback/
19https://martyn.pages.apertis.org/apertis-website/glossary/#built-in-application-bundle

6

https://martyn.pages.apertis.org/apertis-website/concepts/applications/
https://martyn.pages.apertis.org/apertis-website/concepts/applications/
https://martyn.pages.apertis.org/apertis-website/concepts/applications/
https://martyn.pages.apertis.org/apertis-website/concepts/applications/
https://martyn.pages.apertis.org/apertis-website/concepts/applications/
https://martyn.pages.apertis.org/apertis-website/concepts/applications/
https://martyn.pages.apertis.org/apertis-website/concepts/system-updates-and-rollback/
https://martyn.pages.apertis.org/apertis-website/glossary/#built-in-application-bundle
https://martyn.pages.apertis.org/apertis-website/concepts/applications/
https://martyn.pages.apertis.org/apertis-website/concepts/applications/
https://martyn.pages.apertis.org/apertis-website/concepts/system-updates-and-rollback/
https://martyn.pages.apertis.org/apertis-website/concepts/system-updates-and-rollback/
https://martyn.pages.apertis.org/apertis-website/glossary/#built-in-application-bundle

• The platform can be upgraded. This does not need to be particularly187

rapid: a platform upgrade is a major operation which requires rebooting,188

etc. anyway.189

• Before upgrade from version 2 to version 3, the system must take a copy190

(snapshot) of each user’s data for each built-in application bundle.191

• Immediately after upgrade, the data is still in the format used by Browser192

version 17.193

• If the platform is rolled back from version 3 to version 2, the system must194

restore the saved data from platform version 2 for every built-in applica-195

tion, across all users. (Applications design20 §4.2.4, “Built-in Applications196

— Rollback”; System Update and Rollback design21 §6.3, “Update and197

Rollback Procedure”)198

• Uninstalling a built-in application bundle is not possible (Applications199

design22 §4.2.3, “Built-in Applications — Removal”) but it should be pos-200

sible to delete all of its variable data, with the same practical result as if an201

equivalent store application bundle had been uninstalled and immediately202

reinstalled.203

• Cache files for built-in applications are treated the same as cache files for204

Store applications, above.205

Global operations206

User accounts can be created and/or deleted.207

• Deleting a user account does not need to be as rapid as uninstalling an208

application bundle. It should delete that user’s per-user data in all appli-209

cation bundles.210

A “data reset” operation affects the entire system. It clears everything.211

• A “data reset” does not need to be as rapid as uninstalling an application212

bundle. It should delete all variable data in each application bundle, and213

all variable data that is shared by application bundles.214

Unresolved: Does data reset uninstall apps?215

System extensions216

Bundles with sufficient store curator approval and permissions flags may install217

system extensions which will be loaded automatically by platform components.218

The required permissions may vary according to the type of system extension.219

For example, a privileged system-wide systemd unit should be a “red flag” which220

is normally only allowed in built-in applications, whereas a .desktop file for a221

menu entry23 should normally be allowed in store bundles, provided that its222

20https://martyn.pages.apertis.org/apertis-website/concepts/applications/
21https://martyn.pages.apertis.org/apertis-website/concepts/system-updates-and-

rollback/
22https://martyn.pages.apertis.org/apertis-website/concepts/applications/
23https://martyn.pages.apertis.org/apertis-website/concepts/application-entry-points/

7

https://martyn.pages.apertis.org/apertis-website/concepts/applications/
https://martyn.pages.apertis.org/apertis-website/concepts/system-updates-and-rollback/
https://martyn.pages.apertis.org/apertis-website/concepts/applications/
https://martyn.pages.apertis.org/apertis-website/concepts/applications/
https://martyn.pages.apertis.org/apertis-website/concepts/applications/
https://martyn.pages.apertis.org/apertis-website/concepts/application-entry-points/
https://martyn.pages.apertis.org/apertis-website/concepts/applications/
https://martyn.pages.apertis.org/apertis-website/concepts/system-updates-and-rollback/
https://martyn.pages.apertis.org/apertis-website/concepts/system-updates-and-rollback/
https://martyn.pages.apertis.org/apertis-website/concepts/applications/
https://martyn.pages.apertis.org/apertis-website/concepts/application-entry-points/

name matches the relevant ISV’s reversed domain name.223

Public system extensions224

Depending on the type of system extension, an extension might also be intended225

to be loaded directly by store applications. For example, every store application226

should normally load the current user interface theme, and the set of icons as-227

sociated with that theme (although each store application bundle may augment228

these with its own private theming and icon data if desired). We refer to exten-229

sions of this type as public system extensions, analogous to the public interfaces230

defined by the Interface discovery24 design.231

Security and privacy considerations232

• Given an AppArmor profile name, it must be easy to determine (for ex-233

ample via a library API provided by Canterbury) whether the program234

is part of a built-in application bundle, a store application bundle, or the235

platform. For application bundles, it must be easy to determine the bun-236

dle ID. This is because the uid and the AppArmor profile name are the237

only information available to services like Newport that receive requests238

via D-Bus.239

• Similarly, given a bundle ID and whether the program is part of a built-in240

or store application, it must be easy to determine where it may write.241

Again, this is for services like Newport.242

• If existing open source software is included in an application bundle, it243

may read configuration from $prefix/etc with the assumption that this244

path is trusted. Accordingly, we should not normally allow writing to245

$prefix/etc.246

• The set of installed store application bundles is considered to be confiden-247

tial, therefore typical application bundles (with no special permissions)248

must not be able to enumerate the entry points, systemd units, D-Bus249

services, icons etc. provided by store application bundles. A permission250

flag could be provided to make an exception to this rule, for example for251

an application-launcher application like Android’s Trebuchet.252

– Unresolved: Are inactive themes visible to all?253

• Unresolved: Are built-in bundles visible to all?254

Miscellaneous255

• Directory names should be namespaced by reversed domain names25, so256

that it is not a problem if two different vendors produce an app-bundle257

with a generic name like “Navigation”.258

• Because we recommend the GNU Autotools (autoconf, automake, libtool),259

the desired layout should be easy to arrange by using configure options260

24https://martyn.pages.apertis.org/apertis-website/concepts/interface_discovery/
25https://martyn.pages.apertis.org/apertis-website/glossary/#reversed-domain-name

8

https://martyn.pages.apertis.org/apertis-website/concepts/interface_discovery/
https://martyn.pages.apertis.org/apertis-website/glossary/#reversed-domain-name
https://martyn.pages.apertis.org/apertis-website/concepts/interface_discovery/
https://martyn.pages.apertis.org/apertis-website/glossary/#reversed-domain-name

such as --prefix, in a way that can be standardized by build and packaging261

tools.262

• Where possible, functions in standard open-source libraries in our stack,263

such as GLib, Gtk, Clutter should “do the right thing”. For example,264

g_get_cache_dir() should continue to be the correct function to call to get265

a parent directory for an application’s cache.266

• Where possible, functions in other standard open-source libraries such as267

Qt and SDL should generally also behave as we would want. This can268

be achieved by making use of common Linux conventions such as the269

XDG Base Directory specification26 where possible. However, these other270

libraries are likely to have less strong integration with the Apertis platform271

in general, so there may be pragmatic exceptions to this principle: full272

compatibility with these libraries is a low priority.273

Provisional recommendations274

The overall structure of these recommendations is believed to be valid, but the275

exact paths used may be subject to change, depending on the answers to the276

Unresolved design questions and comparison with containerization technologies277

such as Flatpak.278

Writing application bundles279

Application bundle authors should refer to the Apertis Application280

Bundle Specification27 instead of this section. This section might281

describe functionality that is outdated or has not yet been imple-282

mented.283

Static data284

For system-wide static data, programs in application bundles should:285

• link against private shared libraries in the Automake $libdir or $pkglibdir286

via the DT_RPATH (libtool will do this automatically)287

• link against public shared libraries provided by the platform in the com-288

piler’s default search path, without a DT_RPATH (again, libtool will do this289

automatically)290

• run executables from the platform, if required, using the normal $PATH291

search292

• run other executables from the same bundle using paths in the Automake293

$bindir, $libexecdir or $pkglibexecdir294

• load static data from the Automake $datadir, $pkgdatadir, $libdir and/or295

$pkglibdir (using the data directories for architecture-independent data,296

and the library directories for data that may be architecture-specific)297

26http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html
27https://martyn.pages.apertis.org/apertis-website/architecture/bundle-spec/

9

http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html
https://martyn.pages.apertis.org/apertis-website/architecture/bundle-spec/
https://martyn.pages.apertis.org/apertis-website/architecture/bundle-spec/
https://martyn.pages.apertis.org/apertis-website/architecture/bundle-spec/
http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html
https://martyn.pages.apertis.org/apertis-website/architecture/bundle-spec/

– where possible, resource files should be embedded in the executable or298

library using GResource; if that is not possible, they can be included299

in a .gresource resource bundle in the $datadir or $pkgdatadir; if that300

is not possible either, they can be ordinary files in the $datadir or301

$pkgdatadir302

– load plugins from the Automake $pkglibdir or a subdirectory303

• install system extensions to the appropriate subdirectories of $datadir and304

$prefix/lib, if used:305

– .desktop files describing entry points (applications and agents) in306

$datadir/applications307

– D-Bus session services in $datadir/dbus-1/services308

– D-Bus system services in $datadir/dbus-1/system-services309

– systemd user units in $prefix/lib/systemd/user310

– systemd system units in $prefix/lib/systemd/system311

– icons in subdirectories of $datadir/icons according to the freedesk-312

top.org Icon Theme Specification28313

All of these paths will be part of the application bundle. For store applications,314

they will be installed, upgraded, rolled back and removed as a unit. For built-in315

applications, all of these paths will be part of the platform image.316

Icons and themes317

This section might be split out into a separate design document as more require-318

ments become available.319

Icons should be installed according to the freedesktop.org Icon Theme specifica-320

tion29.321

If an application bundle installs a general-purpose icon that should represent an322

included application throughout the Apertis system, it should be installed in the323

hicolor fallback theme, i.e. $datadir/icons/hicolor/$size/apps/$app_id.$format,324

where $size is either a pixel-size or scalable, and $format is png or svg.325

The reserved icon theme name hicolor is used as the fallback when-326

ever a specific theme does not have the required icon, as specified in327

the freedesktop.org Icon Theme specification30. The name hicolor328

was chosen for historical reasons.329

If an application author knows about specific icon themes and wishes to in-330

stall additional icons styled to coordinate with those themes, they may create331

$datadir/icons/$theme_name/$size/apps/$app_id.$format for that purpose. This332

should not be done for themes where the desired icon is simply a copy of the333

hicolor icon.334

28http://standards.freedesktop.org/icon-theme-spec/icon-theme-spec-latest.html
29http://standards.freedesktop.org/icon-theme-spec/icon-theme-spec-latest.html
30http://standards.freedesktop.org/icon-theme-spec/icon-theme-spec-latest.html

10

http://standards.freedesktop.org/icon-theme-spec/icon-theme-spec-latest.html
http://standards.freedesktop.org/icon-theme-spec/icon-theme-spec-latest.html
http://standards.freedesktop.org/icon-theme-spec/icon-theme-spec-latest.html
http://standards.freedesktop.org/icon-theme-spec/icon-theme-spec-latest.html
http://standards.freedesktop.org/icon-theme-spec/icon-theme-spec-latest.html
http://standards.freedesktop.org/icon-theme-spec/icon-theme-spec-latest.html
http://standards.freedesktop.org/icon-theme-spec/icon-theme-spec-latest.html
http://standards.freedesktop.org/icon-theme-spec/icon-theme-spec-latest.html
http://standards.freedesktop.org/icon-theme-spec/icon-theme-spec-latest.html
http://standards.freedesktop.org/icon-theme-spec/icon-theme-spec-latest.html

Rationale: Suppose there is a popular theme named org.example.metallic, and a335

popular application named com.example.ShoppingList. If the author of Shopping336

List has designed an icon that matches the metallic theme, we would like the337

application launcher to use that icon. If not, the author of the metallic theme338

might have included an icon in their theme that matches this popular applica-339

tion; we would like to use that icon as our second preference. Finally, if there340

is no metallic-styled icon available, the launcher should use the application’s341

theme-agnostic icon from the hicolor fallback directory. We can achieve this342

result by placing icons from each app bundle’s $datadir in an early position in343

the launcher’s XDG_DATA_DIRS, and placing icons from the theme itself in a later344

position in XDG_DATA_DIRS: the freedesktop Icon Theme lookup algorithm will345

look for a metallic icon in all the directories listed in XDG_DATA_DIRS before it346

falls back to the hicolor theme.347

The application may install additional icons representing actions, file types,348

emoticons, status indications and so on into its $datadir/icons. For example,349

a web browser might require an icon representing “incognito mode”, which is350

probably not present in all icon themes. Similar to the application icon, the351

browser may install variants of that icon for themes other than hicolor, if its352

author is aware of particular themes and intends the icon to coordinate with353

those themes.354

Unresolved: Standard icon sizes?355

Per-user, per-bundle data356

For cached files that are specific to the application and also specific to a user,357

programs in application bundles may read and write the directory given by358

g_get_user_cache_dir() or by the environment variable XDG_CACHE_HOME. This lo-359

cation is kept intact during upgrades, but is not included in the snapshot made360

during upgrade, so it is effectively emptied during rollback. It is also removed361

by uninstallation or a data reset.362

For configuration that is specific to the application and also specific to a user, the363

preferred API is the GSettings abstraction described in the Preferences and Per-364

sistence design document31. As an alternative to that API, programs in applica-365

tion bundles may read and write the directory given by g_get_user_config_dir(),366

or equivalently by the environment variable XDG_CONFIG_HOME. This locations is367

kept intact and also backed up during upgrades, restored to its old contents368

during a rollback, and removed by uninstallation of the bundle, deletion of the369

user account, or a data reset.370

For other variable data that is specific to the application and also specific371

to a user, programs in application bundles may read and write the directory372

given by g_get_user_data_dir(), or equivalently by the environment variable373

XDG_DATA_HOME. This location has the same upgrade, rollback and removal be-374

31https://martyn.pages.apertis.org/apertis-website/concepts/preferences-and-persistence/

11

https://martyn.pages.apertis.org/apertis-website/concepts/preferences-and-persistence/
https://martyn.pages.apertis.org/apertis-website/concepts/preferences-and-persistence/
https://martyn.pages.apertis.org/apertis-website/concepts/preferences-and-persistence/
https://martyn.pages.apertis.org/apertis-website/concepts/preferences-and-persistence/

haviours as g_get_user_config_dir(). Applications may distinguish between con-375

figuration and other variable data, but we do not anticipate that this will be376

necessary in Apertis.377

For downloads, programs in application bundles may read and write the result of378

g_get_user_special_dir (G_USER_DIRECTORY_DOWNLOADS). Each application bundle379

may assume that it has a download directory per user, shared by all separate380

from other users and other application bundles. The download service, Newport,381

may also write to this location. Uninstalling the application bundle or removing382

the user account causes the download directory to be deleted.383

Unresolved: Are downloads rolled back?384

Per-user, bundle-independent data385

For variable data that is shared between all applications but specific to a user,386

programs in application bundles may read and write locations in the user’s sub-387

directory of /home if they have appropriate permissions flags for their AppArmor388

profiles to allow it. We should restrict this capability, because it may affect the389

behaviour of other applications.390

These locations should not be what is returned by g_get_config_home(), because391

we want the default to be that app bundles are self-contained. We could po-392

tentially provide a way to arrange for specific directories to be symlinked or393

bind-mounted into the normally-app-specific g_get_user_config_dir() and so on.394

These locations are not subject to upgrade or rollback, and are never cleared or395

removed by uninstalling an app-bundle. They are cleared when the user account396

is deleted, or when a data-reset is performed on the entire device.397

Unresolved: How do bundles discover the per-user, bundle-independent loca-398

tion?399

Unresolved: Is g_get_home_dir() bundle-independent?400

User-independent, per-bundle data401

As of Apertis 16.12, this feature has not yet been implemented.402

For variable data that is specific to the application but shared be-403

tween all users, programs in application bundles may read and write404

/var/Applications/$bundle_id/cache, /var/Applications/$bundle_id/config405

and/or /var/Applications/$bundle_id/data. Convenience APIs to construct406

these paths should be provided in libcanterbury. Ribchester should create and407

chmod these directories if and only if the app has a permissions flag saying it408

uses them, so that the system will deny access otherwise.409

These locations have the same upgrade and rollback behaviour as the per-user,410

per-bundle data areas. They are deleted by a whole-device data reset, but are411

not deleted if an individual user account is removed.412

12

Shared data413

For media files, programs in application bundles may read and write the result of414

g_get_user_special_dir (G_USER_DIRECTORY_MUSIC) and/or g_get_user_special_dir415

(G_USER_DIRECTORY_VIDEOS). These locations are shared between users and be-416

tween bundles. The platform may deny access to these locations to bundles417

that do not have a special permissions flag.418

For other variable data that is shared between all applications and all419

users, programs in application bundles may read and write the result of420

g_get_user_special_dir (G_USER_DIRECTORY_PUBLIC_SHARE). The platform may421

deny access to this location to bundles that do not have a special permissions422

flag. This location is shared between users and between bundles.423

These locations are unaffected by upgrade or rollback, but will be cleared by a424

data reset.425

Other well-known directories426

Unresolved: Is PICTURES per-user?427

Unresolved: What is the scope of DESKTOP, DOCUMENTS, TEMPLATES?428

Implementation429

Application bundles should be installed according to the Apertis Application430

Bundle Specification32. This document does not duplicate the information pro-431

vided in that specification, but only gives rationale.432

The split between /Applications or /usr/Applications for static data, and433

/var/Applications for variable data, makes it easy for developers and AppAr-434

mor profiles to distinguish between static and variable data. It also results in435

the two different algorithms used during upgrade for store apps being applied436

to different directories.437

The additional split between /Applications for store application bundles, and438

/usr/Applications for built-in application bundles, serves two purposes:439

• /usr is part of the system partition, which is read-only at runtime (for440

robustness), contains the platform and built-in application bundles, and441

has a limited storage quota because the safe upgrade/rollback mechanism442

means it appears on-disk twice. /Applications is part of the general storage443

partition, which has a more generous storage quota and is read/write at444

runtime.445

• Using a distinctive prefix for built-in application bundles makes it trivial446

to identify built-in applications from their AppArmor profile names, which447

are conventionally linked to the programs’ filenames.448

32https://martyn.pages.apertis.org/apertis-website/architecture/bundle-spec/

13

https://martyn.pages.apertis.org/apertis-website/architecture/bundle-spec/
https://martyn.pages.apertis.org/apertis-website/architecture/bundle-spec/
https://martyn.pages.apertis.org/apertis-website/architecture/bundle-spec/
https://martyn.pages.apertis.org/apertis-website/architecture/bundle-spec/

The specified layout was chosen so that the static files in share/ and449

lib/ could be organised in the way that would be conventional for450

Automake installation with a --prefix=/Applications/$bundle_id or --451

prefix=/usr/Applications/$bundle_id option. For example, because the452

app icon in a store app bundle is named something like /Applica-453

tions/$bundle_id/share/icons/hicolor/$size/apps/$entry_point_id.png, it454

can be installed to ${datadir}/icons/hicolor/$size/apps/$entry_point_id.png in455

the usual way.456

If there are any non-Automake-based application bundles, they should be con-457

figured to install in the same GNU-style directory hierarchy that we would use458

with Automake, with the analogous parameter corresponding to ${prefix}. We459

do not recommend distributing non-Automake-based application bundles.460

The top-level config, cache, data directories within the bundle’s variable data461

should only be created if the application bundle has special permissions flags.462

config, cache, data should be considered to be a minor “red flag” by app-store463

curators: because they share data across user boundaries, they come with some464

risk.465

System integration links for built-in applications466

The .deb package for built-in applications should also include symbolic links for467

the following system integration files:468

• Entry points: link /usr/share/applications/*.service points to469

/usr/Applications/$bundle_id/share/applications/*.service470

• Icons: /usr/share/icons/* → /usr/Applications/$bundle_id/share/icons/*471

• Other theme files: /usr/share/themes/* → /usr/Applications/$bundle_id/share/themes/*472

Store applications must not contain these links: similar links are created at473

install-time instead. See Store application system integration links for details.474

Special directory configuration475

Programs in store application bundles should be run with these environment476

variables, so that they automatically use appropriate directories:477

• XDG_DATA_HOME=/var/Applications/$bundle_id/users/$uid/data (used by478

g_get_user_data_dir)479

• XDG_DATA_DIRS=/Applications/$bundle_id/share:/var/lib/apertis_extensions/public:/usr/share480

(used by g_get_system_data_dirs)481

– See Store application system integration links for the rationale for482

/var/lib/apertis_extensions/public483

• XDG_CONFIG_HOME=/var/Applications/$bundle_id/users/$uid/config (used by484

g_get_user_config_dir)485

• XDG_CONFIG_DIRS=/var/Applications/$bundle_id/etc/xdg:/Applications/$bundle_id/etc/xdg:/etc/xdg486

(used by g_get_system_config_dirs)487

14

• XDG_CACHE_HOME=/var/Applications/$bundle_id/users/$uid/cache (used by488

g_get_user_cache_dir)489

• PATH=/Applications/$bundle_id/bin:/usr/bin:/bin (used when executing490

programs)491

• XDG_RUNTIME_DIR=/run/user/$uid (used by g_get_user_runtime_dir and pro-492

vided automatically by systemd; access is subject to a “whitelist”)493

Unresolved: Should LD_LIBRARY_PATH be set?494

This is automatically done by canterbury-exec in Apertis 16.06 or later, unless495

the entry point’s bundle ID cannot be determined from its .desktop file. For496

backwards compatibility, Canterbury in Apertis 16.09 still attempts to run entry497

points whose bundle ID cannot be determined, but this should be prevented in498

future.499

Built-in application bundles should be given the same environment variables,500

but with /usr/Applications replacing /Applications.501

Unresolved: Is g_get_home_dir() bundle-independent?502

Unresolved: Is g_get_temp_dir() bundle-independent?503

In addition, the XDG special directories should be configured as follows for both504

built-in and store application bundles:505

• g_get_user_special_dir (G_USER_DIRECTORY_DESKTOP): Unresolved: What506

is the scope of DESKTOP, DOCUMENTS, TEMPLATES?507

• g_get_user_special_dir (G_USER_DIRECTORY_DOCUMENTS): Unresolved:508

What is the scope of DESKTOP, DOCUMENTS, TEMPLATES?509

• g_get_user_special_dir (G_USER_DIRECTORY_DOWNLOAD): /var/Applications/$bundle_id/users/$uid/downloads510

• g_get_user_special_dir (G_USER_DIRECTORY_MUSIC): /home/shared/Music511

• g_get_user_special_dir (G_USER_DIRECTORY_PICTURES): Unresolved: Is PIC-512

TURES per-user?513

• g_get_user_special_dir (G_USER_DIRECTORY_PUBLIC_SHARE): /home/shared514

• g_get_user_special_dir (G_USER_DIRECTORY_TEMPLATES): Unresolved:515

What is the scope of DESKTOP, DOCUMENTS, TEMPLATES?516

• g_get_user_special_dir (G_USER_DIRECTORY_VIDEOS): /home/shared/Videos517

Again, this is automatically done by canterbury-exec in Apertis 16.06 or later.518

Permissions and ownership519

All files under /usr/Applications and /Applications should be owned by root,520

with the standard system permissions (u=rwX,og=rX — that is, root may write,521

and all users may read all files, execute programs that are marked executable522

and enter directories).523

/var/Applications, /var/Applications/$bundle_id and /var/Applications/$bundle_id/users/524

are also owned by root, with the standard system permissions.525

15

If they exist, /var/Applications/$bundle_id/{config,data,cache}/ are owned by526

root, with permissions a=rwx. If they are not required and allowed by a permis-527

sions flag, they must not exist.528

Unresolved: Can we prevent symlink attacks in shared directories?529

/var/Applications/$bundle_id/users/$uid/ and all of its subdirectories are owned530

by $uid, with permissions u=rwx,og-rwx for privacy (in other words, only acces-531

sible by the owner or by root).532

Physical layout533

The application-visible directories in /var/Applications and /Applications are534

only mount points. Applications’ real storage is situated on the general storage535

volume, in the following layout:536

<general storage volume>537

├─app-bundles/538

│ ├─com.example.MyApp/ (store app-bundle)539

│ │ ├─current → version-1.2.2-1 (symbolic link)540

│ │ ├─rollback → version-1.0.8-2 (symbolic link)541

│ │ ├─version-1.0.8-2/542

│ │ │ ├─static/ (subvolume)543

│ │ │ │ ├─bin/544

│ │ │ │ └─share/ (etc.)545

│ │ │ └─variable/ (subvolume)546

│ │ │ └─users/547

│ │ │ └─1001/548

│ │ │ ├─cache/549

│ │ │ ├─config/550

│ │ │ └─data/ (etc.)551

│ │ └─version-1.2.2-1/552

│ │ ├─static/ (subvolume)553

│ │ └─variable/ (subvolume)554

│ └─org.apertis.Frampton/ (store app-bundle)555

│ ├─current → version-2.5.1-1 (symbolic link)556

│ └─version-2.5.1-1/557

│ └─variable/ (subvolume)558

… <other directories subvolumes unrelated to application bundles>559

The static and variable directories are btrfs subvolumes so that they can be560

copied using snapshots, while the other directories shown may be either subvol-561

umes or ordinary directories. The current and rollback symbolic links indicate562

the currently active version, and the version to which a rollback would move,563

respectively.564

Built-in application bundles do not have a static subvolume, because their static565

files are part of /usr on the read-only operating system volume.566

16

All other filenames in this hierarchy are reserved for the application manager,567

which may create temporary directories and symbolic links during its operation.568

It must create these in such a way that it can recover from abrupt power loss569

at any point, for example by making careful use of POSIX atomic filesystem570

operations to implement “transactions”.571

During normal operation, the subvolumes would be mounted as follows:572

com.example.MyApp/current/static → /Applications/com.example.MyApp573

com.example.MyApp/current/variable → /var/Applications/com.example.MyApp574

org.apertis.Frampton/current/variable → /var/Applications/org.apertis.Frampton575

so that the expected paths such as /var/Applications/com.example.MyApp/users/1001/config/576

are made available.577

Only one subvolume per application is mounted – under normal circumstances,578

this will be the one with the highest version. After a system rollback it might579

be an older version if the most recent is unlaunchable.580

Installation and upgrading581

Suppose we are installing com.example.MyApp version 2, or upgrading it from582

version 1 to version 2. An optimal implementation would look something like583

this:584

• If it was already installed:585

– Instruct any running processes belonging to that bundle to exit586

– Wait for the processes to save their state and exit; if a timeout is587

reached, kill the processes588

– Unmount the com.example.MyApp/version-1/static subvolume from589

/Applications/com.example.MyApp590

– Unmount the com.example.MyApp/version-1/variable subvolume from591

/var/Applications/com.example.MyApp592

– Create a snapshot of com.example.MyApp/version-1/static named593

com.example.MyApp/version-2/static594

– Create a new snapshot of com.example.MyApp/version-1/variable,595

named com.example.MyApp/version-2/variable596

– Recursively delete the cache and users/*/cache directories from597

com.example.MyApp/version-1/variable598

• If it was not already installed, instead:599

– Create a new, empty subvolume com.example.MyApp/version-600

2/variable to be mounted at /var/Applications/com.example.MyApp601

– Create a new, empty subvolume com.example.MyApp/version-2/static602

to be mounted at /Applications/com.example.MyApp603

• For each existing static file in com.example.MyApp/version-2/static that was604

carried over from com.example.MyApp/version-1/static:605

– If there is no corresponding file in version 2, delete it606

17

– If its contents do not match the corresponding file in version 2, delete607

it608

– If its metadata do not match the one in version 2, update the meta-609

data610

• For each static file in version 2:611

– If there is no corresponding file in com.example.MyApp/version-612

2/static, the file is either new or changed. Unpack the new613

version.614

• (Optional, if support for this feature is required) Copy any files required615

from share/factory/{etc,var} to {etc,var}, overwriting files retained from616

previous versions if and only if the retained version matches what is617

in version 1’s share/factory/{etc,var} but does not match version 2’s618

share/factory/{etc,var}619

A simpler procedure would be to create the com.example.MyApp/version-2/static620

subvolume as empty, and then unpack all of the static files from the new version.621

However, that procedure would not provide de-duplication between consecutive622

versions if a file has not changed. As of Apertis 16.09, only this simpler proce-623

dure has been implemented.624

Ribchester (and perhaps Canterbury) must be modified to create the per-user625

directories /var/Applications/$bundle_id/users/$uid. This was implemented in626

Apertis 16.06.627

Store application system integration links628

Application installation for store applications may set up symbolic links in629

/var/lib/apertis_extensions for the categories of system integration files de-630

scribed in System integration links for built-in applications, but the files and631

their contents must be restricted unless the bundle has special permissions flags.632

In particular, all entry points (agents and applications) in a bundle must be in633

the relevant ISV33’s namespace.634

For example, an application bundle containing a user interface and an agent635

could be linked like this:636

• /var/lib/apertis_extensions/applications/com.example.MyApp.UI.desktop637

→ /Applications/com.example.MyApp/share/applications/com.example.MyApp.UI.desktop638

• /var/lib/apertis_extensions/applications/com.example.MyApp.Agent.desktop639

→ /Applications/com.example.MyApp/share/applications/com.example.MyApp.Agent.desktop640

The designers of Apertis can introduce new system integration points in future641

versions if required.642

The platform components that need to support loading “extension” compo-643

nents from store application bundles will be modified or configured to look644

in /var/lib/apertis_extensions. For example, Canterbury could be run with645

33https://martyn.pages.apertis.org/apertis-website/glossary/#isv

18

https://martyn.pages.apertis.org/apertis-website/glossary/#isv
https://martyn.pages.apertis.org/apertis-website/glossary/#isv

XDG_DATA_DIRS=/var/lib/apertis_extensions:/usr/share so that it will pick up ac-646

tivatable services from /var/lib/apertis_extensions/dbus-1/services.647

System integration links for public extensions648

/var/lib/apertis_extensions should not be included in the XDG_DATA_DIRS for649

store applications, so that store applications do not automatically attempt to650

read these restricted directories and receive AppArmor denials. However, a few651

types of system extension should be loaded by all programs, not just privileged652

platform components. For example, GUI themes would typically provide icons653

in $datadir/icons and other related files in $datadir/themes, which are intended654

to be loaded by arbitrary applications (so that those applications coordinate655

with the theme).656

We recommend that the system bind-mounts or copies these files into the cor-657

responding subdirectory of /var/lib/apertis_extensions/public. In conjunction658

with the environment variables described above, this means that libraries and659

applications that follow the XDG Base Directory specification34, for example660

Gtk’s theme support, will load them automatically.661

Please note that symbolic links are not suitable for public extensions,662

because AppArmor access-control is based on the result of dereferenc-663

ing the symbolic link: if a store application com.example.ShoppingList664

renders widgets using the org.example.metallic theme, it would not665

be allowed to read through a symbolic link that points into /Applica-666

tions/org.example.metallic/share/themes/org.example.metallic/, but it can be667

allowed to read the same directory indirectly by bind-mounting that directory668

onto /var/lib/apertis_extensions/public/themes/org.example.metallic/.669

Uninstallation670

• Uninstalling a store application bundle consists of removing /Applica-671

tions/$bundle_id, /var/Applications/$bundle_id and the corresponding sub-672

volumes.673

• Uninstalling a built-in application bundle is not possible, but it can be674

reset (equivalent to uninstallation and reinstallation) by deleting and re-675

creating /var/Applications/$bundle_id and its corresponding subvolumes.676

• Deleting a user should delete every directory matching /var/Applications/*/users/$uid,677

in addition to the user’s home directory.678

• A “data reset” consists of:679

– deleting and re-creating /var/Applications/$bundle_id for every appli-680

cation bundle681

– (optional, if a data reset is intended to uninstall store app bundles)682

clearing /Applications683

– (optional, if this feature is required) populating {etc,var} from684

share/factory/{etc,var} as if for initial installation685

34http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html

19

http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html
http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html

AppArmor profiles686

Every application bundle should have rules similar to these in its AppArmor687

profile:688

• #include <abstractions/chaiwala-base> (normal “safe” functionality)689

• /{usr/,}Applications/$bundle_id/{bin,lib,libexec}/** mr (map libraries690

and the executable described by the profile; read arch-dependent static691

files)692

• /{usr/,}Applications/$bundle_id/{bin,libexec}/** pix (run other executa-693

bles from the same bundle under their own profile, or inherit current profile694

if they do not have their own)695

• /{usr/,}Applications/$bundle_id/share/** r (read arch-independent static696

files)697

• owner /var/Applications/$bundle_id/users/** rwk (read, write and lock per-698

app, per-user files for the user running the app)699

Note that a write is only allowed if it is allowed by both AppArmor and file700

permissions, so user A is normally prevented from accessing user B’s files by file701

permissions. The last rule is given the owner keyword only for completeness.702

Application bundles that require them may additionally have rules similar to703

these:704

• /var/Applications/$bundle_id/{config,data,cache}/** rwk (read, write,705

lock per-bundle, cross-user variable files)706

• /home/shared/{Music,Videos} rwk (read, write, lock cross-bundle, cross-user707

media files)708

• /home/shared/{,**} rwk (read, write, lock all cross-bundle, cross-user files)709

• owner /home/*/$something rwk (read, write, lock selected cross-bundle, per-710

user files for the user running the app)711

<abstractions/chaiwala-base> should be modified to include712

• /var/lib/apertis_extensions/public/** r713

to support public extensions.714

Unresolved design questions715

Are downloads rolled back?716

Newport stores downloaded files in a directory per (bundle ID, user) pair. When717

an app is rolled back, are those files treated like a cache (deleted), or treated718

like user data (also rolled back), or left as they are?719

Does data reset uninstall apps?720

Does a data reset leave the installed store apps installed, or does it uninstall721

them all? (In other words, does it leave store apps’ static files intact, or does it722

20

delete them?)723

Are inactive themes visible to all?724

Suppose the system-wide theme is “blue”, and the user has installed but not acti-725

vated “red” and “green” themes from the app store. Is it OK for an unprivileged726

app-bundle to be able to see that the “red” and “green” themes exist?727

• The same applies to any other Public system extensions.728

• For simplicity, we recommend the answer “yes, this is acceptable” unless729

there is a reason to do otherwise.730

Are built-in bundles visible to all?731

We know that unprivileged app-bundles are not allowed to enumerate the store732

application bundles that are installed. Is it OK for an unprivileged app-bundle733

to be allowed to enumerate the built-in application bundles?734

• For simplicity, we recommend the answer “yes, this is acceptable” unless735

there is a reason to do otherwise.736

Standard icon sizes?737

Are there specific icon sizes that we want to require every app to supply? As of738

November 2015, the “Mildenhall” reference HMI uses 36x36 icons. Launchers739

should be prepared to scale icons as a fallback, but scaled icons at small pixel740

sizes tend to look blurry and low-quality, so icons of exactly the size required741

for the HMI should be preferred.742

How do bundles discover the per-user, bundle-independent location?743

The precise location to be used for per-user, bundle-independent data, and the744

API to get it, has not been decided.745

Is g_get_home_dir() bundle-independent?746

It is undecided whether the HOME environment variable and g_get_home_dir()747

should point to /home/$user, or to a per-user, per-bundle location. If those point748

to a per-user, per-bundle location, then a separate API will need to be provided749

by libcanterbury with which a program can access per-user, bundle-independent750

data.751

Is g_get_temp_dir() bundle-independent?752

It is undecided whether the TMPDIR environment variable and g_get_temp_dir()753

should point to /tmp as they normally do, or to a per-user, per-bundle location.754

21

Is PICTURES per-user?755

Should G_USER_DIRECTORY_PICTURES be shared between users and between bundles756

like G_USER_DIRECTORY_MUSIC and G_USER_DIRECTORY_VIDEOS, or should it be per-user757

like $HOME, or should it be per-user per-bundle like g_get_user_cache_dir()?758

As of Apertis 16.06, it has been implemented as shared, like G_USER_DIRECTORY_MUSIC.759

What is the scope of DESKTOP, DOCUMENTS, TEMPLATES?760

What should the scope of G_USER_DIRECTORY_DESKTOP, G_USER_DIRECTORY_DOCUMENTS,761

G_USER_DIRECTORY_TEMPLATES be? Or should we declare these to be unsupported762

on Apertis, and set them to the same place as $HOME as documented by their763

specification?764

As of Apertis 16.06, these were marked as unsupported and set to be the same765

as $HOME.766

Unresolved implementation questions767

Can we prevent symlink attacks in shared directories?768

Can we use AppArmor to prevent the creation of symbolic links in directories769

that are shared between users or between bundles, so that applications do not770

need to take precautions to avoid writing through a symbolic link, which could771

allow one trust domain to make another trust domain overwrite a chosen file772

if the writing application is insufficiently careful? We probably cannot use +t773

permissions (the “sticky bit”, which activates restricted deletion and symlink774

protection), because that would prevent one user from deleting a file created by775

another user, which is undesired here.776

Should LD_LIBRARY_PATH be set?777

The Autotools build system (autoconf, automake and libtool) will automatically778

configure executables to load libraries built from the same source tree in their779

installed locations, using the DT_RPATH ELF header, so it is unnecessary to set780

LD_LIBRARY_PATH.781

However, we might wish to set LD_LIBRARY_PATH=/Applications/${bundle_id}/lib782

(or the obvious /usr/Applications equivalent) so that app-bundles built with a783

non-Automake build system will “just work”.784

Similarly, we might wish to set GI_TYPELIB_PATH=/Applications/${bundle_id}/lib/girepository-785

1.0 for app-bundles that use GObject-Introspection.786

22

Alternative designs787

Merge static and variable files for store applications788

One option that was considered was to separate the read-only parts of built-in789

application bundles (in /usr/Applications) from the read/write parts (in /Ap-790

plications), but not separate the read-only parts of store application bundles791

(in /Applications) from the read/write parts (also in /Applications).792

This reduces the number of subvolumes (one subvolume per store bundle instead793

of two), but requires additional complexity in the store bundle installer: it would794

have to distinguish between the static data directories (bin, share, etc.) and the795

variable data directories (cache, users, etc.) by name.796

Add a third subvolume per app-bundle for cache797

Conversely, because cache files are not rolled back, we could consider separat-798

ing disposable cache files from the other read/write parts; they would not be799

subject to snapshots, and during a rollback, the cache subvolume would simply800

be deleted and re-created.801

Each user’s files under their $HOME802

This strategy is not recommended, and is only mentioned here to document why803

we have not taken it.804

The recommendations above keep all users’ variable files for a given application805

bundle, and any variable files for that bundle that are shared among all users,806

together. An alternative design that we could have used would be to keep all of807

a user’s variable files, across all bundles, in one place (for example their home808

directory, $HOME).809

Because store application bundles can be rolled back independently, each user810

would need at least one subvolume per store application bundle plus one sub-811

volume for built-in application bundles, so that the chosen store application812

bundle’s data area could be rolled back without affecting other bundles.813

The reason that this design was rejected is that it scales poorly in some cases, in-814

cluding the one that we expect to be most frequent (store app-bundle installation815

and uninstallation). While it does require fewer subvolume manipulations than816

the recommended design for some operations, those operations are expected to817

be rare. To illustrate this, suppose we have 10 built-in bundles, 20 store bundles818

and 5 users.819

If we install, upgrade or remove the store bundle com.example.MyApp, which ad-820

ditionally has some variable files that are shared between users. With the rec-821

ommended design, we only have to perform O(1) subvolume operations (two822

with the recommended design, one if we Merge static and variable files for store823

applications, or three if we Add a third subvolume per app-bundle for cache).824

23

In this alternative design, we would have to perform O(number of users) sub-825

volume operations, in this case 7: one for the bundle’s static files, one for its826

variable files shared between users, and one per user.827

Similarly, when we upgrade the platform and we wish to take a snapshot of each828

built-in application’s data, the recommended design requires us to take 10 snap-829

shots (more generally O(1), one per built-in bundle), whereas this alternative830

requires 50-60 snapshots (more generally O(number of users), one per built-in831

bundle per user, and zero or one per built-in bundle for non-user-specific data).832

If we add or delete a user, in the recommended design we would have to perform833

31 subvolume operations, or more generally O(number of bundles): one per834

store or built-in bundle, plus one extra operation for non-bundle-specific data.835

In this alternative we would need a minimum of 22 subvolume operations, or836

more generally O(number of store bundles): one per store bundle, one for all837

built-in bundles together, and one for non-bundle-specific data.838

If we perform a data reset without uninstalling store app bundles, the recom-839

mended design would require at least 30 subvolume deletions (one per applica-840

tion bundle), whereas this design would require at least 150 subvolume deletions841

(one per bundle per user).842

System integration links for services843

It would be technically possible to install user-services (services that run as a844

particular user, similar to Tracker) in an application bundle, and register them845

with the wider system via system integration links (System integration links846

for built-in applications, Store application system integration links) pointing to847

their systemd user services and D-Bus session services.848

We recommend that this is not done, because general systemd user services are849

powerful and have a global effect. Instead, we recommend that per-app-bundle850

user-services (agents) are implemented by having the application manager (Can-851

terbury) generate a carefully constrained subset of service file syntax from the852

entry point metadata.853

System services in app-bundles854

It would be technically possible to install system services (services that do not855

run as a specific user) in an application bundle, registering them via system856

integration links as above.857

We recommend that this is not done, because system services are extremely858

powerful and can have extensive privileges. Instead, system services should be859

part of the platform35 layer.860

35https://martyn.pages.apertis.org/apertis-website/glossary/#platform

24

https://martyn.pages.apertis.org/apertis-website/glossary/#platform
https://martyn.pages.apertis.org/apertis-website/glossary/#platform

Appendix: application layout in Apertis 15.09861

Sudoku is one example of a store application bundle. Its source code is not862

currently public. xyz is used here to represent the common prefix for an Apertis863

variant. The layout of the store application bundle looks like this:864

/appstore/865

store.json866

store.sig867

xyz-sudoku_config.tar868

xyz-sudoku_config/869

xyz-sudoku.png870

xyz-sudoku_manifest.json871

/xyz-sudoku.tar872

xyz-sudoku/873

bin/874

xyz-sudoku875

share876

glib-2.0877

schemas878

com.app.xyz-sudoku.gschema.xml879

com.app.xyz-sudoku.enums.xml880

gschemas.compiled881

background.png882

icon_sudoku.png883

(more graphics)884

The manifest indicates that /xyz-sudoku.tar is expected to be unpacked into /Ap-885

plications, leading to filenames like /Applications/xyz-sudoku/bin/xyz-sudoku.886

Frampton36 is an example of a built-in application bundle shipped in 15.09. Its887

layout is as follows:888

/usr/889

Applications/890

frampton/891

bin/892

frampton893

frampton-agent894

test-frampton-agent895

lib/896

libframptonagentiface.so{,.0,.0.0.0}897

share/898

IconBig_Music.png899

icon_albums_inactive.png900

...901

artist-album-views/902

36https://gitlab.apertis.org/appfw/frampton

25

https://gitlab.apertis.org/appfw/frampton
https://gitlab.apertis.org/appfw/frampton

DetailView.json903

...904

glib-2.0/905

schemas/906

com.app.frampton-agent.gschema.xml907

...908

locale/909

de/910

...911

/Applications/912

Frampton/913

app-data/914

Internal/915

FramptonAgent.db916

frampton/917

app-data/918

(empty)919

Issues with the application filesystem layout in these examples:920

• There is no “manifest” file with metadata for the built-in application bun-921

dle as a whole.922

• The “manifest” files for entry points in both store and built-in applica-923

tions are GSettings schema XML, which is not how GSettings is designed924

to be used. They are also incorrectly namespaced: the app developer pre-925

sumably does not own app.com. We should use org.apertis.* for Apertis926

components, {com,net,org}.example.* for developer examples, and a ven-927

dor’s name elsewhere.928

• There is no separation between users. “user” owns all of /Applications.929

• Frampton’s app bundle ID is ambiguous: is it Frampton or frampton?930

We should choose exactly one ID, and make the AppArmor profile forbid931

using the other.932

• Frampton’s app bundle ID is not namespaced. The Applications de-933

sign document37 specifies use of a reversed domain name38 such as934

org.apertis.Frampton.935

• Similarly, Sudoku’s app bundle ID is not namespaced.936

• There is no well-known location for apps’ icons: Frampton places937

its icons in /usr/Applications/frampton/share/, but other apps use938

/usr/Applications/$bundle_id/share/images, requiring mildenhall-939

launcher to be allowed to read both locations.940

• There is no well-known location into which Newport may download files.941

37https://martyn.pages.apertis.org/apertis-website/concepts/applications/
38https://martyn.pages.apertis.org/apertis-website/glossary/#reversed-domain-name

26

https://martyn.pages.apertis.org/apertis-website/concepts/applications/
https://martyn.pages.apertis.org/apertis-website/concepts/applications/
https://martyn.pages.apertis.org/apertis-website/concepts/applications/
https://martyn.pages.apertis.org/apertis-website/glossary/#reversed-domain-name
https://martyn.pages.apertis.org/apertis-website/concepts/applications/
https://martyn.pages.apertis.org/apertis-website/glossary/#reversed-domain-name

Appendix: comparison with other systems942

Desktop Linux (packaged apps)943

There are many possibilities, but a common coding standard looks like this:944

• Main programs are installed in $bindir (which is set to /usr/bin)945

• Supporting programs are installed in $libexecdir (which is set to either946

/usr/libexec or /usr/lib), often in a subdirectory per application package947

• Public shared libraries are installed in $libdir (which is set to either948

/usr/lib or /usr/lib64 or /usr/lib/$architecture)949

– Plugins are installed in a subdirectory of $libdir950

– Private shared libraries are installed in a subdirectory of $libdir951

• .gresource resource bundles (and any resource files that cannot use GRe-952

source) are installed in $datadir, which is set to /usr/share953

• System-level configuration is installed in a subdirectory of $sysconfdir,954

which is set to /etc955

• System-level variable data is installed in $localstatedir/lib/$package and956

$localstatedir/cache/$package, with $localstatedir set to /var957

• There is normally no technical protection between apps, but per-user vari-958

able data is stored according to the XDG Base Directory specification39959

in:960

– $XDG_CONFIG_HOME/$package, defaulting to /home/$username/.config/$package,961

where $username is the user’s login name and $package is the short962

name of the application or package963

– $XDG_DATA_HOME/$package, defaulting to /home/$username/.local/share/$package964

– $XDG_CACHE_HOME/$package, defaulting to /home/$username/.cache/$package965

• The user’s home directory, normally /home/$username, is shared between966

apps but private to the user967

– It is usually technically possible for one app to alter another app’s968

subdirectories of $XDG_CONFIG_HOME etc.969

• There is no standard location that can be read and written by all users,970

other than temporary directories which are not intended to be shared971

Debian Policy §9.1 “File system hierarchy”40 describes the policy followed on972

Debian and Ubuntu systems for non-user-specific data. It references the Filesys-973

tem Hierarchy Standard, version 2.341.974

Similar documents:975

• The Filesystem Hierarchy Standard, version 3.042 has not yet been976

adopted by Debian Policy.977

• The GNU Coding Standards43 use a similar layout by default.978

39http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html
40https://www.debian.org/doc/debian-policy/ch-opersys.html#s9.1
41http://www.pathname.com/fhs/pub/fhs-2.3.html
42http://refspecs.linuxfoundation.org/FHS_3.0/fhs/index.html
43https://www.gnu.org/prep/standards/html_node/Directory-Variables.html#Directory-

Variables

27

http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html
https://www.debian.org/doc/debian-policy/ch-opersys.html#s9.1
http://www.pathname.com/fhs/pub/fhs-2.3.html
http://www.pathname.com/fhs/pub/fhs-2.3.html
http://www.pathname.com/fhs/pub/fhs-2.3.html
http://refspecs.linuxfoundation.org/FHS_3.0/fhs/index.html
https://www.gnu.org/prep/standards/html_node/Directory-Variables.html#Directory-Variables
http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html
https://www.debian.org/doc/debian-policy/ch-opersys.html#s9.1
http://www.pathname.com/fhs/pub/fhs-2.3.html
http://refspecs.linuxfoundation.org/FHS_3.0/fhs/index.html
https://www.gnu.org/prep/standards/html_node/Directory-Variables.html#Directory-Variables
https://www.gnu.org/prep/standards/html_node/Directory-Variables.html#Directory-Variables

• systemd’s proposals for file hierarchy44 have been partially adopted by979

Linux distributions.980

Flatpak981

Autoconf/Automake software in a Flatpak45 package is built with --prefix=/app,982

and the static files of the app are mounted at /app inside the sandbox. Each983

Flatpak has its own private view of the filesystem inside its sandbox, so this984

does not lead to conflict over ownership of /app as might be expected.985

• Main programs are installed in $bindir, which is /app/bin986

• Supporting programs are installed in $libexecdir, which is /app/libexec987

• Private shared libraries are installed in $libdir, which is /app/lib, or in a988

subdirectory989

– Plugins are installed in a subdirectory of $libdir990

• Static resources are embedded using GResource, installed in /app/share as991

a .gresource resource bundle, or installed in /app/share as plain files992

• System-level configuration is installed in /app/etc993

• Per-user variable data is stored in /home/$username/.var/app/$app_id/{data,config,cache},994

which are bind-mounted into the app’s filesystem namespace, with the995

XDG_{DATA,CONFIG,CACHE}_HOME environment variables set to point at those996

locations997

• Shared variable data is stored in /var/lib/$app_id, /var/cache/$app_id.998

(How widely shared is this really?)999

Integration files (systemd units, D-Bus services, etc.) are said to be exported1000

by the Flatpak, and they are linked into $XDG_DATA_HOME/flatpak/exports or1001

/var/lib/flatpak/exports outside the sandbox.1002

Runtimes (sets of libraries) are mounted at /usr inside the sandbox.1003

Android1004

• System app packages (the equivalent of our built-in application bundles46)1005

are stored in /system/app/$package.apk1006

• Normal app packages (the equivalent of our store application bundles47)1007

are stored in /data/app/$package.apk1008

• Private shared libraries and plugins (and, technically, any other supporting1009

files) are automatically unpacked into /data/data/$package/lib/ by the OS1010

• Resource files are loaded from inside the .apk file (analogous to GResource)1011

instead of existing as files in the filesystem1012

• Per-user variable data is stored in /data/data/$package/ on single-user de-1013

vices1014

44http://www.freedesktop.org/software/systemd/man/file-hierarchy.html
45http://flatpak.org/
46https://martyn.pages.apertis.org/apertis-website/glossary/#built-in-application-bundle
47https://martyn.pages.apertis.org/apertis-website/glossary/#store-application-bundle

28

http://www.freedesktop.org/software/systemd/man/file-hierarchy.html
http://flatpak.org/
https://martyn.pages.apertis.org/apertis-website/glossary/#built-in-application-bundle
https://martyn.pages.apertis.org/apertis-website/glossary/#store-application-bundle
http://www.freedesktop.org/software/systemd/man/file-hierarchy.html
http://flatpak.org/
https://martyn.pages.apertis.org/apertis-website/glossary/#built-in-application-bundle
https://martyn.pages.apertis.org/apertis-website/glossary/#store-application-bundle

• Per-user variable data is stored in /data/user/$user/$package/ on multi-1015

user devices1016

• There is no location that is private to an app but shared between users.1017

The closest equivalent is /sdcard/$package, which is conventionally only1018

used by the app $package, but is technically accessible to all apps.1019

• There is no location that is shared between apps but private to a user.1020

• /sdcard is shared between apps and between users. Large data files such1021

as music and videos are normally stored here.1022

systemd “revisiting Linux systems” proposal1023

The authors of systemd propose a structure like this48. At the time of writing,1024

no implementations of this idea are known.1025

• The static files of application bundles are installed in a subvolume named1026

app:$bundle_id:$runtime:$architecture:$version, where:1027

– $bundle_id is a reversed domain name identifying the app bundle itself1028

– $runtime identifies the set of runtime libraries needed by the applica-1029

tion bundle (in our case it might be org.apertis.r15_09)1030

– $architecture represents the CPU architecture1031

– $version represents the version number1032

• That subvolume is mounted at /opt/$bundle_id in the app sandbox. The1033

corresponding runtime is mounted at /usr.1034

• User-specific variable files are in a subvolume named, for example,1035

home:user:1000:1000 which is mounted at /home/user.1036

• System-level variable files go in /etc and /var as usual.1037

• There is currently no concrete proposal for a trust boundary between apps:1038

all apps are assumed to have full access to /home.1039

• There is no location that is private to an app but shared between users.1040

• There is no location that is shared between apps and between users, other1041

than removable media.1042

References1043

• Applications design document49 (v0.5.4 used)1044

• Multimedia design document50 (v0.5.4 used)1045

• Security design document51 (v1.1.3 used)1046

• System Update and Rollback design document52 (v1.6.2 used)1047

48http://0pointer.net/blog/revisiting-how-we-put-together-linux-systems.html
49https://martyn.pages.apertis.org/apertis-website/concepts/applications/
50https://martyn.pages.apertis.org/apertis-website/concepts/multimedia/
51https://martyn.pages.apertis.org/apertis-website/concepts/security/
52https://martyn.pages.apertis.org/apertis-website/concepts/system-updates-and-

rollback/

29

http://0pointer.net/blog/revisiting-how-we-put-together-linux-systems.html
https://martyn.pages.apertis.org/apertis-website/concepts/applications/
https://martyn.pages.apertis.org/apertis-website/concepts/multimedia/
https://martyn.pages.apertis.org/apertis-website/concepts/security/
https://martyn.pages.apertis.org/apertis-website/concepts/system-updates-and-rollback/
http://0pointer.net/blog/revisiting-how-we-put-together-linux-systems.html
https://martyn.pages.apertis.org/apertis-website/concepts/applications/
https://martyn.pages.apertis.org/apertis-website/concepts/multimedia/
https://martyn.pages.apertis.org/apertis-website/concepts/security/
https://martyn.pages.apertis.org/apertis-website/concepts/system-updates-and-rollback/
https://martyn.pages.apertis.org/apertis-website/concepts/system-updates-and-rollback/

	Requirements
	Static files
	Variable files
	Upgrade, rollback, reset and uninstall
	System extensions
	Security and privacy considerations
	Miscellaneous

	Provisional recommendations
	Writing application bundles
	Implementation
	Permissions and ownership
	Physical layout
	Installation and upgrading
	Uninstallation
	AppArmor profiles

	Unresolved design questions
	Are downloads rolled back?
	Does data reset uninstall apps?
	Are inactive themes visible to all?
	Are built-in bundles visible to all?
	Standard icon sizes?
	How do bundles discover the per-user, bundle-independent location?
	Is g_get_home_dir() bundle-independent?
	Is g_get_temp_dir() bundle-independent?
	Is PICTURES per-user?
	What is the scope of DESKTOP, DOCUMENTS, TEMPLATES?

	Unresolved implementation questions
	Can we prevent symlink attacks in shared directories?
	Should LD_LIBRARY_PATH be set?

	Alternative designs
	Merge static and variable files for store applications
	Add a third subvolume per app-bundle for cache
	Each user's files under their $HOME
	System integration links for services
	System services in app-bundles

	Appendix: application layout in Apertis 15.09
	Appendix: comparison with other systems
	Desktop Linux (packaged apps)
	Flatpak
	Android
	systemd ``revisiting Linux systems'' proposal

	References

