
Cloud-friendly APT repository publishing

Contents1

Why we need a new APT publisher 22

Alternatives to reprepro 23

Aptly . 34

Pulp . 45

Conclusion 56

Implementation plan . 57

Why we need a new APT publisher8

Apertis relies on OBS1 for building and publishing binary packages. However,9

upstream OBS uses dpkg-scanpackages to publish APT repositories in a simplistic10

way, which is not suitable for a project the scale of Apertis, where a single OBS11

project contains a lot of packages.12

Therefore, our OBS instance uses a custom publisher based on reprepro, but it13

is still subject to some limitations that are now more noticeable as the scale of14

Apertis has grown considerably:15

• When branching a release reprepro has to be invoked manually to initialize16

the exported repositories17

• When branching a release the OBS publisher has to be manually disabled18

or it will cause severe lock contention with the manual command above19

• Removing a package requires manual intervention20

• Snapshots are not supported natively21

• Cloud storage is not supported22

In order to address these shortcomings, we need to develop a new APT publisher23

(based on a backend other than reprepro) which should be capable of:24

• Publishing the whole Apertis release on non-cloud storage25

• Publishing the whole Apertis release on cloud storage26

• Automatic branching of an Apertis release, not requiring manual interven-27

tion on the APT publisher28

• Synchronize OBS and APT repositories; as an example, removing a pack-29

age from OBS should trigger the removal of the package from the APT30

repositories as well31

Alternatives to reprepro32

The Debian wiki includes a page2 listing most of the software currently available33

for managing APT repositories. However, a significant portion of those tools34

1https://martyn.pages.apertis.org/apertis-website/architecture/workflow-guide/
2https://wiki.debian.org/DebianRepository/Setup

2

https://martyn.pages.apertis.org/apertis-website/architecture/workflow-guide/
https://wiki.debian.org/DebianRepository/Setup
https://martyn.pages.apertis.org/apertis-website/architecture/workflow-guide/
https://wiki.debian.org/DebianRepository/Setup

cover only one of the following use-cases:35

• managing a small repository, containing only a few packages36

• replicating a (sometimes simplified) official Debian infrastructure37

A few of the mentioned tools, however, are aimed at managing large-scale repos-38

itories within a custom infrastructure, and offer more advanced features which39

could be of interest to Apertis. Those are:40

• aptly41

• pulp42

Laniakea3 was also considered, but as it’s meant to work within a full Debian-like43

infrastructure and doesn’t offer any cloud-based storage option, it was dismissed44

as well.45

Extended search did not point to other alternative solutions covering our use-46

case.47

Aptly48

Aptly4 is a complete solution for Debian repository management, including49

mirroring, snapshots and publication.50

It uses a local pool and database and provides cloud storage options for publish-51

ing ready-to-serve repositories. Aptly also provides a full-featured CLI client52

and an almost complete REST API, only missing mirroring support. It could53

therefore run either directly on the same server as OBS, or on a different one.54

Package import and repository publication are separate operations:55

• The package is first imported to the local pool and associated to the56

requested repository in a single operation57

• When all required packages are imported, the repository can be published58

atomically59

Repositories can be published both to the local filesystem and to a cloud-based60

storage service (Amazon S3 or OpenStack Swift).61

Finally, Aptly identifies each package using the (name, version, architecture)62

triplet: by doing so, it allows keeping multiple versions of the same package in63

a single repository, while reprepro kept only the latest package version. This64

requires additional processing for Aptly to replicate the current behavior.65

Pros66

• tailored for APT repository management: includes some interesting fea-67

tures such as dependency resolving and multi-component publishing68

3https://github.com/lkhq/laniakea
4https://www.aptly.info/

3

https://github.com/lkhq/laniakea
https://www.aptly.info/
https://github.com/lkhq/laniakea
https://www.aptly.info/

• command-line or REST API interface (requires an additional HTTP server69

for authentication and permissions management)70

Cons71

• uses a local package pool which can grow large if a lot of packages and72

versions are used simultaneously73

• requires additional processing to keep only the latest version of each pack-74

age75

• needs regular database cleanups76

Pulp77

Pulp5 is a generic solution for storing and publishing binary artifacts. It uses78

plugins for managing specific artifact types, and offers a plugin for DEB pack-79

ages.80

It offers flexible storage options, including S3 and Azure, which can also be ex-81

tended as the storage backend is built on top of django-storages, which provides82

a number of additional options.83

Pulp can be used through a REST API, and provides a command-line client84

for wrapping a significant portion of the API calls. Unfortunately, the DEB85

plugin isn’t handled by this client, meaning only the REST API is available for86

managing those packages.87

Its package publication workflow involves several Pulp objects:88

• the binary artifact (package) itself89

• a Repository90

• a Publication91

• a Distribution92

Each Distribution is tied to a single Publication, which is itself tied to a specific93

Repository version. As each Repository modification increments the Repository94

version, adding or removing a package involves the following steps:95

• add or remove the package from the Repository96

• retrieve the latest Repository version97

• create a new Publication for this repository version98

• update the Distribution to point to the new Publication99

• remove the previous Publication100

This workflow feels too heavy and error-prone when working with a distribution101

the scale of Apertis, where lots of packages are often added or updated. Addi-102

tionally, each Distribution must have its own base URL, preventing publishing103

multiple Apertis versions and components in the same repository.104

5https://pulpproject.org/

4

https://pulpproject.org/
https://pulpproject.org/

Pros105

• generic artifacts management solution: can be re-used for storing non-106

package artifacts too107

• flexible storage options108

Cons109

• complex workflow for publishing/removing packages110

• unable to store multiple repositories on the same base URL111

• can only be used through REST API112

Conclusion113

Based on the previous software evaluation, aptly seems to be the more appro-114

priate choice:115

• supports snapshots116

• can make use of cloud-based storage for publishing repositories117

• provides useful features aimed specifically at APT repository management118

• allow publishing several repositories and components to a single endpoint119

Its main shortcoming (local pool) can be addressed by using the REST API for120

running aptly on a dedicated server. In the future, it might also be possible to121

configure a different aptly server per OBS project.122

Implementation plan123

• Update OBS to the latest upstream version124

• Start with a prototype, local-only version capable of:125

– adding a package to a (manually created) local repository126

– publishing the local repository127

– deleting a package from the repository when removing it from OBS128

• Implement automated branching and repository creation for new OBS129

projects130

• Add configuration options for publishing to cloud-based storage131

• Automate periodic database cleanups132

• Implement REST API interface (global configuration)133

5

	Why we need a new APT publisher
	Alternatives to reprepro
	Aptly
	Pulp

	Conclusion
	Implementation plan

