
Automated License Compliance

Contents1

FOSSology . 32

CI Pipeline integration . 33

Binary to source file mapping 44

CI Pipeline integration . 55

Binary Licensing Reporting 66

CI Pipeline integration . 67

A Linux system such as those assembled by Apertis contain components licensed8

under many different licenses. These various licenses impose different conditions9

and it is important to understand to a good degree of fidelity the terms under10

which each component is provided. We are proposing to implement an auto-11

mated process to generate software Bills Of Materials (BOMs) which detail12

both the components used in Apertis and the licensing that applies to them.13

Licensing isn’t static, nor is it always as simple as all the components from a14

given source package deriving the same license. Packages have been known to15

change licenses and/or provide various existing or new components under dif-16

ferent terms. Either now or at some point in the future, the licenses of some of17

the components in Apertis may start to be provided under terms that Apertis18

may wish to avoid1. For example, by default Apertis is careful not to include19

components to be used in the target system that are licensed under the GPL20

version 3, the licensing terms wouldn’t be acceptable in Apertis’ target markets.21

In order to take advantage of new functionality and support being developed in22

the software community, Apertis needs to incorporate newer versions of exist-23

ing software packages and replace some with alternatives when better or more24

suitable components are created. To ensure that the licensing conditions remain25

favorable for the use cases targeted by Apertis, it is important to continually26

validate that the licensing terms under which these components are provided.27

These licensing terms should be documented in a way that is accessible to Aper-28

tis’ users.29

Debian packages by default track licensing on a per source package level. The30

suitability of a package is decided at that level before it is included in Debian,31

which meets the projects licensing goals2. Apertis will continue to evaluate32

licensing before the inclusion of source packages in the distribution, but also33

wishes to take a more nuanced approach, tracking licensing for each file in each34

of it’s binary packages. By tracking licensing to this degree we can look to35

exclude components with unsatisfactory licensing from the packages intended36

for distributed target systems, whilst still packaging them separately so they37

may be utilized during development. A good example of this situation is the38

gcc source package and the libgcc1 binary package produced by it. Unlike the39

other artifacts produced by the GCC source package, the libgcc1 binary package40

1https://martyn.pages.apertis.org/apertis-website/policies/license-expectations/
2https://www.debian.org/social_contract.html#guidelines

2

https://martyn.pages.apertis.org/apertis-website/policies/license-expectations/
https://martyn.pages.apertis.org/apertis-website/policies/license-expectations/
https://martyn.pages.apertis.org/apertis-website/policies/license-expectations/
https://www.debian.org/social_contract.html#guidelines
https://martyn.pages.apertis.org/apertis-website/policies/license-expectations/
https://www.debian.org/social_contract.html#guidelines

is not licensed under the stock GPLv3 license, a run time exception3 is provided41

and it is thus fine to ship it on target devices. The level of tracking we are42

providing will detect such situations and will offer a straight forward way to43

resolve them, maintaining compliance with the licensing requirements.44

To achieve this 2 main steps need to be taken:45

• Record the licensing of the project source code, per file46

• Determine the mapping between source code files and the binary/data47

files in each binary package48

These steps have been integrated into our CI pipelines to provide early detection49

of any change to the licensing status of each package. Extending our CI pipelines50

also enables developers to learn about new issues and to solve them during the51

merge request development flow.52

FOSSology53

FOSSology is an Open Source server based tool which provides a web front-end54

that is able to scan through source code (and to a degree binaries) provided to55

it, finding license statements and texts. To achieve this FOSSology employs a56

number of different scanning techniques to identify potential licenses, including57

using matching to known license texts and keywords. The scanning process errs58

on the side of caution, generating false positives over missing potential licens-59

ing information, as a result it will be necessary to “clear” the licenses that are60

found, deciding whether the matches are valid or not. The scanning and clear61

process during the first time is more time consuming and requires special atten-62

tion, however, subsequent runs should be much faster as FOSSology is able to63

use previous decisions to find the license information. Once completed, FOSSol-64

ogy records the licensing decisions and can apply this information to updated65

scans of the source. It is anticipated that, after an initial round of verification,66

FOSSology will only require additional clearing of license information should67

the scan detect new sources of potential licensing information in an updated68

projects source or when new packages are added to Apertis. It is possible to69

export and import reports which contain the licensing decisions that have pre-70

viously been made, if a trusted source of reports can be found then these could71

also be imported, potentially reducing the work required.72

FOSSology is backed by the Linux Foundation, it appears to have an active user73

and developer base and a significant history and it is the de-facto Open Source74

Software solution for license compliance. As such, it is felt that this tool is likely75

to be maintained for the foreseeable future.76

As this tool provides a web bases UI, it presents an additional advantage, as77

it makes it easier for non-technical users, such as auditors or lawyers, to access78

and manage the reports, allowing a smooth integration in an audit process.79

3https://martyn.pages.apertis.org/apertis-website/policies/license-exceptions/#gcc8

3

https://martyn.pages.apertis.org/apertis-website/policies/license-exceptions/#gcc8
https://martyn.pages.apertis.org/apertis-website/policies/license-exceptions/#gcc8

For all the reasons mentioned above we understand this is the best choice for80

integration into the Apertis workflow.81

CI Pipeline integration82

In order to avoid manual tasks the license detection should be integrated into83

the CI process. FOSSology provides a REST API4 to enable such integration.84

FOSSology is able to consume branches of git repositories, thus allowing scan-85

ning of the given source code straight from GitLab. This process should be86

triggered after updating a package from external sources, as in this cases a87

license change can be introduced. A report will be generated and retrieved, us-88

ing the REST API, which describes (among other things) the licensing status of89

each file. The report can be generated in a number of formats, including various90

SPDX flavors that are easily machine parsable, using DEP55 as the preferred91

option. It is suggested that each component should require a determination of92

the licensing to have been made for every file in the project. Due to the large93

volume of licensing matches that will result from the initial licensing scan, we94

recommend that the absence of license information initially generates a warn-95

ing. In some cases, to achieve the fine grained licensing information desired, the96

licensing of some files may need to be clarified with the components author(s).97

Once an initial pass of all Apertis components had been made we would expect98

missing license information to result in an error, as such errors would be as a99

result of new matches being found, which would need to be resolved in FOSSol-100

ogy before CI would complete without an error. The generated report should101

be saved in the Debian metadata archive so that it is available for the following102

processing.103

The adoption of FOSSology will be gradual and in parallel with the current104

license scanning process in order to compare the results and improve the work-105

flow. Once the process is fully reviewed and tested with all the packages in the106

target repository FOSSology will be the default scanner.107

Binary to source file mapping108

Binaries are built from many different source files, but the exact list of them109

depends on build options. For this reason a reliable mechanism needs to be put110

in place to extract this list after the build process in order to determine the111

license information.112

Compilers store information in the binaries it outputs, that can be used by a113

debugger to pause execution of a process at a point corresponding to a selected114

line of source code. This information provides a mapping between the lines of115

source code and the compiled machine code operations. Executable binaries116

4https://www.fossology.org/get-started/basic-rest-api-calls/
5https://dep-team.pages.debian.net/deps/dep5/

4

https://www.fossology.org/get-started/basic-rest-api-calls/
https://dep-team.pages.debian.net/deps/dep5/
https://www.fossology.org/get-started/basic-rest-api-calls/
https://dep-team.pages.debian.net/deps/dep5/

in Linux are generally stored in the Executable and Linkable Format6 (ELF),117

the associated DWARF7 debugging data format is generally used to store this118

debugging information inside the ELF in specific “debug” sections.119

The tool dwarf2sources parses this information and extracts the name of the120

source files that were used to generate each binary, generating a json file that can121

easily be parsed later. Combining this with the licensing information provided122

in the licensing report, a mapping can be made between each binary and it’s123

associated licenses.124

CI Pipeline integration125

Apertis uses the Open Build Service (OBS) platform to build the binary pack-126

ages in a controlled manner across several architectures and releases. OBS uti-127

lizes dpkg-buildpackage behind the scenes to build each package. This utility has128

access to the source licensing report as it is contained in the Debian metadata129

archive. As well as the source licensing, the Debian metadata archive contains130

configuration to help dpkg-buildpackage determine how to build the source. This131

is typically done with the help of debhelper8, which provides helpers that sim-132

plify this process.133

Apertis extended debhelper by including a new command dh_dwarf2sources to134

perform the source file name extraction using dwarf2sources as described above.135

Typically the binaries are striped (using a debhelper command called dh_strip)136

prior to packaging, removing the debug symbols from the binary and reducing137

its size. For this reason dh_dwarf2sources is placed before this step in the dh138

sequence. Whilst the debug symbols are kept, packaged separately in the dbgsym139

package, it’s easier to perform the mapping before this is done. The result is140

stored in the binary package under /usr/share/doc/<package>/.141

Following this same idea, Apertis also extends debhelper command142

dh_installdocs to install the license report generated by FOSSolgy in the143

binary under /usr/share/doc/<package>/copyright_report.144

Despite that this solution should work for most packages, some of them might145

need special handing as may override default rules. These special cases will be146

covered with further improvements.147

There may be packages in Apertis that do not make use of debhelper, these148

packages need special handling to ensure that the required steps are completed.149

As these reports are provided by each binary package, the reports from installed150

packages can be accessed at image build time and amalgamated into an image151

wide report at that point should it be required. As a binary can be built from152

multiple sources, each with differing licenses, it is necessary for the report to153

detail each file that is used to create each binary and the licensing under which154

6https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
7https://en.wikipedia.org/wiki/DWARF
8https://manpages.debian.org/jessie/debhelper/debhelper.7.en.html

5

https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
https://en.wikipedia.org/wiki/DWARF
https://manpages.debian.org/jessie/debhelper/debhelper.7.en.html
https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
https://en.wikipedia.org/wiki/DWARF
https://manpages.debian.org/jessie/debhelper/debhelper.7.en.html

it is provided. In some circumstances dual licensed source code may allow for155

a binary to be effectively licensed under the terms of a single license, that is156

the user has the option to pick a license that results in the whole binary being157

able to be provided under the terms of a single license. Where dual licensed158

source code isn’t used, the terms of all applicable licenses should be declared.159

The terms of the various licenses may be considered compatible9, allowing the160

binary to effectively be managed under the terms of the more restrictive license.161

For example, a binary derived from source code licensed with the GPLv2 license162

and other source code licensed with the MIT license, the terms of both apply to163

the binary, though as the terms of the MIT license will be met if the binary is164

used in accordance with the terms of the GPLv2, then handling the binary as165

though it was licensed under the GPLv2 will ensure the terms of both are met.166

Not all possible combinations of licenses work out this way and thus why it is167

important to ensure that licensing is properly tracked.168

Binary Licensing Reporting169

The approach each project using Apertis takes with regards to the reporting of170

licensing information should be driven by how this information is to be utilized,171

i.e. some projects may wish to parse the license information and present it in a172

single BOM file in HTML, XML or human readable text.173

For the images provided by the Apertis project, the script generate_bom.py com-174

bines the reports saved in /usr/share/doc/<package>/, which consists in a json175

per package and a DEP5 file per source package into a single json file which is176

provided with the image. This file can be generated with different levels of177

verbosity allowing to list licenses per image, package, binary or source file.178

This same scripts also issues a warning in case a problematic license is found.179

CI Pipeline integration180

Apertis utilizes Debos10 in its image generation pipeline, which provides a very181

versatile way of customizing them. During the final stage of the image creation,182

the script generate_bom.py is used to build the BOM file with the license informa-183

tion of the image and export it as an additional artifact. Finally as both minimal184

and targetimages should not shipped extra data, the contents of /usr/share/doc/185

are dropped from the image.186

9https://en.wikipedia.org/wiki/License_compatibility
10https://github.com/go-debos/debos

6

https://en.wikipedia.org/wiki/License_compatibility
https://github.com/go-debos/debos
https://en.wikipedia.org/wiki/License_compatibility
https://github.com/go-debos/debos

	FOSSology
	CI Pipeline integration
	Binary to source file mapping
	CI Pipeline integration

	Binary Licensing Reporting
	CI Pipeline integration

