
Compositor security

Contents1

Background . 22

Other platforms . 33

Use-cases . 34

Home screen . 35

Platform UI elements . 46

Launching a program . 57

Last-used mode . 68

Main window selection . 79

Child windows . 810

Notifications . 911

Focus-stealing . 1012

Non-graphical programs . 1113

Screenshots . 1114

Synthesized input . 1215

Trusted input paths . 1216

Interaction with the automotive domain 1317

Design notes . 1418

Recommendations . 1419

Further reading . 1420

The compositor is the component of Apertis that is responsible for drawing21

application windows and other graphical elements on the screen.22

Background23

The compositor is a process responsible for combining surfaces (texture buffers)24

representing application windows into the single 2D image displayed on the25

screen. In an X11 environment, it combines the roles of a window manager126

and a compositing manager2. In a Wayland environment, it also takes on the27

role of the display server3 from X11.28

In Apertis 15.12 with either X11 or Wayland, the compositor runs as the mutter29

executable. This is a thin executable wrapper around the library libmutter,30

which provides the majority of its functionality; both of these components are31

part of GNOME’s Mutter project. Additionally, the mildenhall-mutter-plugin32

component is loaded by the mutter executable as a plugin, and provides an33

Apertis-specific reference user experience (UX). Near-future versions of Apertis34

might move to a model more like GNOME Shell, where the component respon-35

sible for the compositor’s UX is a standalone executable linked to libmutter,36

with the equivalent of the code from mildenhall-mutter-plugin included in that37

executable; this would have little effect on the compositor’s behaviour.38

If Apertis moves from Mutter to Weston as its compositor in a future release,39

1https://en.wikipedia.org/wiki/Window_manager
2https://en.wikipedia.org/wiki/Compositing_window_manager
3https://en.wikipedia.org/wiki/Display_server

2

https://en.wikipedia.org/wiki/Window_manager
https://en.wikipedia.org/wiki/Compositing_window_manager
https://en.wikipedia.org/wiki/Display_server
https://en.wikipedia.org/wiki/Window_manager
https://en.wikipedia.org/wiki/Compositing_window_manager
https://en.wikipedia.org/wiki/Display_server

we anticipate that the UX layer equivalent to mildenhall-mutter-plugin would40

become a Weston plugin.41

In X11, unprivileged graphical programs4 cannot display their graphics before42

the display server has started. Programs arrange for their graphics to be dis-43

played by connecting to the X11 display server and sending a request to create44

a window. Such requests are always granted: if the compositor has not yet been45

started, the X11 display server itself carries out fallback window management46

behaviour in which the window is displayed with the size and position that the47

program requested. If the compositor has already been started, the window48

is not immediately displayed, but is instead made available to the compositor,49

which may choose whether to composite the window into the final 2D scene (and50

if so, where to place it).51

In Wayland, the compositor is the display server. Graphical programs arrange52

for their graphics to be displayed by creating a buffer (a surface) in GPU mem-53

ory, drawing their text, images etc. into that buffer, then sending requests to54

the Wayland compositor which ask the compositor to include that surface in the55

final 2D scene. Unprivileged programs cannot display graphics until the com-56

positor is ready, so we can be sure that the compositor’s policies are applied to57

every surface.58

We aim to provide the usual security properties described in the Security design59

document5:60

• confidentiality61

• integrity62

• availability63

for the two mechanisms provided by the compositor:64

• output (placing application windows on the screen)65

• input (dispatching input events such as touchscreen touches and gestures66

to applications)67

Wayland Compositors - Why and How to Handle Privileged Clients6 provides68

a good overview of how those security properties apply to compositors.69

Other platforms70

In GNOME 3 on either Wayland or X11, GNOME Shell is a standalone exe-71

cutable linked to the libmutter library, similar to the design proposed above.72

Android’s SurfaceFlinger and Windows’ Desktop Window Manager also fulfil73

essentially the same role as our compositor.74

4https://martyn.pages.apertis.org/apertis-website/glossary/#graphical-program
5https://martyn.pages.apertis.org/apertis-website/concepts/security/
6http://www.mupuf.org/blog/2014/02/19/wayland-compositors-why-and-how-to-

handle/

3

https://martyn.pages.apertis.org/apertis-website/glossary/#graphical-program
https://martyn.pages.apertis.org/apertis-website/concepts/security/
https://martyn.pages.apertis.org/apertis-website/concepts/security/
https://martyn.pages.apertis.org/apertis-website/concepts/security/
http://www.mupuf.org/blog/2014/02/19/wayland-compositors-why-and-how-to-handle/
https://martyn.pages.apertis.org/apertis-website/glossary/#graphical-program
https://martyn.pages.apertis.org/apertis-website/concepts/security/
http://www.mupuf.org/blog/2014/02/19/wayland-compositors-why-and-how-to-handle/
http://www.mupuf.org/blog/2014/02/19/wayland-compositors-why-and-how-to-handle/

Use-cases75

“The platform” refers to the overall Apertis platform, including the compositor,76

application manager and so on.77

Because we anticipate that the desired graphical presentation and user experi-78

ence (UX) will be a point of differentiation for OEMs, each of these requirements79

should be interpreted as a requirement that it is possible for the platform to be-80

have as specified, and a recommendation that OEMs’ platform variants should81

do so unless it conflicts with their desired UX. For example, for brevity, we82

will use “the compositor must …” as shorthand for “it must be possible for the83

compositor to …, and we recommend that OEMs’ compositors should have that84

behaviour unless it conflicts with their desired UX”.85

Home screen86

In some circumstances, such as when the Apertis device is switched on for the87

first time, it must go into a default state.88

• The platform must draw a “home screen” or launcher from which further89

programs can be launched.90

• The home screen may either be part of the compositor, or a separate91

graphical program.92

• Pressing a button or menu entry representing an application entry point793

results in the relevant graphical program being started.94

(These are aspects of input and output availability).95

Platform UI elements96

In addition to the home screen, there might be UI elements which are outside the97

scope of any particular application window, such as a status bar, Notifications,98

System-modal dialogs, or the UI controls used for application-switching.99

• The OEM-specific visual design might reserve regions of the screen for100

these visual elements. We recommend that this is done.101

– For example, the equivalent features in Android are the small re-102

gion at the top of the screen that is normally reserved for the status103

bar, and the larger region at the bottom or side of the screen that104

is normally reserved for the navigation bar (Back, Home and Apps105

buttons).106

• The compositor may either draw each of those UI elements itself, or ar-107

range for separate programs to provide them.108

• Some of these UI elements must remain visible at all times (they must be109

displayed on top of ordinary program windows), unless the compositor’s110

UX calls for them to be hidden under certain specific circumstances.111

7https://martyn.pages.apertis.org/apertis-website/concepts/application-entry-points/

4

https://martyn.pages.apertis.org/apertis-website/concepts/application-entry-points/
https://martyn.pages.apertis.org/apertis-website/concepts/application-entry-points/

– For example, Android allows applications to request that the status112

bar and navigation bar are hidden, but the gestures to reinstate them113

are always available, and the operating system displays a reminder114

of those gestures when they become hidden.115

• If separate programs provide some or all of these UI elements, then normal116

platform startup must arrange for them to be launched.117

(These are aspects of input and output availability).118

Trusted output119

• The compositor must not allow unprivileged programs to display their120

content in the regions of the screen that are reserved for these UI elements,121

unless the compositor’s UX design specifically allows it. This is a trusted122

path with which the platform can display information to the user. (Output123

integrity)124

– Ideally, the APIs provided to programs should be designed so that it125

is impossible to request display in a forbidden area.126

– If the APIs provided to programs are such that the program can127

attempt to display in these regions, and an unprivileged program128

attempts to do so, this must be detected and prevented.129

• Trusted paths are discussed in academic security literature, for example130

References.131

Launching a program132

When a graphical program is launched, after carrying some non-graphical ini-133

tialization, it will create a surface, fill it with the first frame that it wants to be134

displayed, and submit that surface to the compositor for display.135

• The compositor must be able to identify that surface as having come from136

that graphical program. In particular, it must be able to determine the137

app-bundle8 and user account9 that originated the surface. (Input and138

output integrity)139

– Non-requirement: If an app-bundle is allowed to contain multiple140

graphical programs, the ability to distinguish between those graph-141

ical programs is optional. We treat the app-bundle as a security142

boundary, but we do not place a security boundary between individ-143

ual graphical programs within an app-bundle.144

• This identification must be securely authenticated. If a different user145

account or app-bundle asks to display a surface, one of these options must146

be true:147

1. (Preferred) The compositor obtains the originating program’s user148

account and app-bundle directly from the Linux kernel or some other149

8https://martyn.pages.apertis.org/apertis-website/glossary/#app-bundle
9https://martyn.pages.apertis.org/apertis-website/glossary/#user-account

5

https://martyn.pages.apertis.org/apertis-website/glossary/#app-bundle
https://martyn.pages.apertis.org/apertis-website/glossary/#user-account
https://martyn.pages.apertis.org/apertis-website/glossary/#app-bundle
https://martyn.pages.apertis.org/apertis-website/glossary/#user-account

trusted platform component, and there is no opportunity for the150

originating program to give false information.151

2. The originating program tells the compositor which user account and152

app-bundle it claims to be, and the compositor verifies in a secure153

way that this claim is true.154

– Non-requirement: If an app-bundle is allowed to contain multiple155

graphical programs and the compositor distinguishes between them,156

it is acceptable for it to be possible for a graphical program to be able157

to impersonate a different graphical program in the same bundle.158

• The compositor must perform whatever appropriate smooth graphical159

transition is desired (for example a cross-fade, animated movement, or160

a simple atomic change between one frame and the next) between the161

home screen and the graphical program’s surface as the main contents of162

the screen.163

• If the compositor’s UX involves multiple tiled content areas, the graphical164

program must be displayed in the desired content area.165

– In Wayland, the application only controls the content of its surfaces,166

and the compositor chooses where they are displayed, so this is easy167

to ensure.168

• If the compositor’s UX involves floating or cascading windows (as seen169

in GNOME, Windows, etc.), the graphical program must be displayed in170

the location chosen by the compositor. It may influence that location by171

setting “hints” in its requests, but the compositor must be free to ignore172

those hints.173

– Again, this is how Wayland always works in any case.174

• The compositor must arrange for any UI elements that should remain175

visible at all times to remain visible and interactive during this process176

(input and output availability):177

– if they are provided by the compositor itself, they must be layered178

above the graphical program’s surfaces in the compositor’s scene-179

graph;180

– if they are provided by a separate “shell” program, the surfaces repre-181

senting them must be layered above the surfaces from the graphical182

program.183

• The compositor must deliver location-specific input events such as touch-184

screen touches to the application at the relevant location, and to no other185

application. (Input availability, input confidentiality)186

• In particular, if application windows can overlap (for example stacking or187

cascading), and application A is in front of application B, then application188

A must not be able to trick the user into entering confidential input that189

was intended for application B by making itself transparent or almost-190

transparent, so that the user interface of application B shows through191

(clickjacking10). (Input confidentiality)192

• The compositor must deliver non-location-specific input events such as193

10https://en.wikipedia.org/wiki/Clickjacking

6

https://en.wikipedia.org/wiki/Clickjacking
https://en.wikipedia.org/wiki/Clickjacking

touchscreen edge-swipe gestures to the current application, using a defi-194

nition of “current” that is part of its UX, and to no other application.195

(Input availability, input confidentiality)196

Last-used mode197

In some circumstances, such as when the Apertis device is switched off with a198

particular app active, UX designers may wish to return to a previous saved state,199

for example one that was saved during device shutdown (“last-used mode”).200

• The platform must arrange for each of the graphical programs that was201

previously active and visible (in the foreground) to be restarted.202

• When one of those graphical programs asks the compositor to display a203

surface, the compositor must place it in the same location where it was204

previously visible.205

• The platform may launch other graphical programs that were running but206

not visible when the state was saved. They must not become visible until207

the user makes a request to switch to them.208

– Alternatively, the platform may delay starting those graphical pro-209

grams until the user makes a request to switch to them.210

(Input and output availability)211

Main window selection212

The user should have the opportunity to switch between the main (top-level)213

windows presented by various programs.214

A graphical program might make it difficult for the user to leave, either acciden-215

tally (because the program has become unresponsive) or deliberately as a denial216

of service (because the program is maliciously written or has been compromised217

by an attacker).218

• The compositor must have the opportunity to intercept input events219

(touchscreen touches, touchscreen gestures, hardware button presses)220

regardless of the actions of the program. (Input availability)221

• The compositor should always provide a way to return to a home screen222

or application switcher, from which an unresponsive program can be ter-223

minated. (Input and output availability)224

• The way to return to a home screen or application switcher should be225

consistent and predictable. For example, Android reserves a small area of226

the screen for Back, Home and Applications buttons. In older Android227

versions, applications such as the camera may request that these buttons228

are displayed unobtrusively, but are not able to hide them altogether; in229

newer versions, these buttons can be hidden, but the swipe gesture to make230

them available cannot be disabled, and the user is given a reminder of that231

gesture which cannot be hidden by the application. (Input availability,232

output integrity)233

7

– Optionally, specially privileged app-bundles might be given the234

opportunity to hide these UI elements, or arrange for one of the235

app-bundle’s surfaces to be displayed as an overlay “above” them.236

However, this should be a “red flag” in app-store review, to be237

granted only to trusted applications. For example, Android requires238

the SYSTEM_ALERT_WINDOW permission11 for applications239

that use overlays, and additionally requires that the user has been240

specifically prompted by the platform to grant this permission to241

this app. (Output integrity)242

• If the compositor receives an input event that it interprets as a request to243

switch away from the graphical program, for example pressing a “home”244

or “application switcher” button, then this switch must occur within a245

reasonable time, even if the current graphical program does not cooperate246

with that operation. This must have a smooth graphical transition (cross-247

fade or animation) if that is the desired UX. (Input and output availability)248

– For example, if a bug in the current graphical program results in249

it ceasing to respond to messages from the compositor (for example250

a deadlock or live-lock situation) and the window switching opera-251

tion involves communicating with it, the compositor must not wait252

indefinitely for a response. If it gets a response, it may switch imme-253

diately; if it does not, it may wait a short time, but after that time254

it must continue switching anyway. The maximum wait time should255

be chosen so that switching still appears responsive.256

– Similarly, if the current graphical program is deliberately/maliciously257

written with the intention of delaying task-switching as much as pos-258

sible, the compositor must still switch within a reasonable time.259

• Each window offered for switching must be associated with the relevant260

app-bundle, for example with a title and/or icon, so that when the user261

believes they are switching to a particular window, they can know that262

they are in fact switching to a window from the correct trust domain.263

(Input and output integrity)264

– The ability to distinguish between windows from different graphical265

programs in the same app-bundle is optional, because graphical pro-266

grams in an app-bundle share a trust domain.267

• A UX designer might require a limit on the number of simultaneous win-268

dows per app-bundle. For example, an app-bundle might be limited to269

having up to 5 entry points in the same or different processes, each with270

up to 2 main windows open at any given time.271

Child windows272

A graphical program might include dialogs12 in its UX.273

11https://developer.android.com/reference/android/provider/Settings.html#
canDrawOverlays%28android.content.Context%29

12https://en.wikipedia.org/wiki/Dialog_box

8

https://developer.android.com/reference/android/provider/Settings.html#canDrawOverlays%28android.content.Context%29
https://en.wikipedia.org/wiki/Dialog_box
https://developer.android.com/reference/android/provider/Settings.html#canDrawOverlays%28android.content.Context%29
https://developer.android.com/reference/android/provider/Settings.html#canDrawOverlays%28android.content.Context%29
https://en.wikipedia.org/wiki/Dialog_box

• We recommend that dialogs should normally appear as a direct result of274

user activity, but they may also appear as a result of an external event.275

• If the graphical program’s corresponding main window is currently dis-276

played in a particular location, the dialog should overlay that location.277

If the API to open dialogs makes it possible to attempt to place dialogs278

elsewhere, and the program does so, the compositor must prevent this.279

(Output integrity)280

• If surfaces (windows) are tiled, stacked or floating, the dialog may ex-281

tend outside the boundaries of the graphical program’s main window if282

desired, but we recommend that this pattern is discouraged. If this is283

done, it should always be made obvious which surface the dialog belongs284

to. (Output integrity)285

• The dialog must not prevent the user from switching away from the pro-286

gram, even if it extends outside the main window; in other words, it may287

be app-modal or document-modal, but must not be system-modal. (Input288

and output availability)289

• We suggest encouraging the use of document-modal dialogs13 similar to290

those in OS X14 and GNOME15.291

A graphical program might include pop-up or drop-down menus in its UX.292

• Menus typically behave like a document-modal window immediately above293

their “parent” window.294

• The requirements are essentially the same as for dialogs, although the295

visual presentation is likely to be different.296

Notifications297

External events might result in a notification, typically implemented as a “pop-298

up” window.299

• A calendar might trigger notifications as time passes, for example when300

an appointment will occur soon.301

• A messaging application (for example email or Twitter) might trigger a302

notification when new messages are available.303

These notifications should be displayed by the platform user interface (HMI),304

either as part of the compositor (like in GNOME Shell) or a separate process.305

• If there is a current notification, the platform should draw a visual repre-306

sentation of it, displaying it “above” any current window. (Output avail-307

ability for the notification)308

• If there is no current notification, any program (including non-graphical309

programs such as agents) may trigger a new notification. (Output avail-310

ability for the notification)311

13https://en.wikipedia.org/wiki/Dialog_box#Document%20modal
14https://developer.apple.com/library/mac/documentation/UserExperience/Conceptual/

OSXHIGuidelines/WindowDialogs.html#//apple_ref/doc/uid/20000957-CH43-SW2
15https://wiki.gnome.org/Design/OS/ModalDialogs

9

https://en.wikipedia.org/wiki/Dialog_box#Document%20modal
https://developer.apple.com/library/mac/documentation/UserExperience/Conceptual/OSXHIGuidelines/WindowDialogs.html#//apple_ref/doc/uid/20000957-CH43-SW2
https://wiki.gnome.org/Design/OS/ModalDialogs
https://en.wikipedia.org/wiki/Dialog_box#Document%20modal
https://developer.apple.com/library/mac/documentation/UserExperience/Conceptual/OSXHIGuidelines/WindowDialogs.html#//apple_ref/doc/uid/20000957-CH43-SW2
https://developer.apple.com/library/mac/documentation/UserExperience/Conceptual/OSXHIGuidelines/WindowDialogs.html#//apple_ref/doc/uid/20000957-CH43-SW2
https://wiki.gnome.org/Design/OS/ModalDialogs

• Each notification should be visually associated with the appropriate app-312

bundle, perhaps via an icon and title. (Output integrity)313

• Notifications should be drawn in such a way that only the compositor (or314

the trusted notification service, if separate) can produce the same visual315

result, for example by displaying it over the top of Platform UI elements in316

a way that would not be possible or would not be allowed for an ordinary317

application window. (Output integrity)318

– As with Platform UI elements, this is an example of trusted path319

graphics; see References.320

• There should be a straightforward mechanism by which the driver can close321

any notification, minimizing distraction. (Input and output availability for322

other UI components)323

• High-priority platform components such as navigation must be able to324

force their notifications to be displayed instead of, or “above”, other com-325

ponents’ notifications. (Output availability for the higher-priority notifi-326

cation)327

• Excessive notifications by an application might distract the driver. The328

compositor must have the opportunity to limit the number of notifications329

per app-bundle or deny notification display altogether, with an optional330

user-configurable limit per application so that the user could selectively331

silence an app-bundle that they found distracting.332

• The precise handling of notifications (for example topics such as how mul-333

tiple simultaneous notifications are handled) is outside the scope of this334

document.335

• If the notification has “actions”, for example a button to go to the relevant336

app-bundle, these actions must be able to bring that app-bundle to the337

foreground.338

GNOME’s design page for notifications, in addition to GNOME’s own designs16,339

has some useful references to other platforms in the “See Also” section17.340

Focus-stealing341

A graphical program might attempt to get the user’s attention by creating new342

main windows while it is in the background.343

• These windows must not be displayed or given input focus, to avoid user344

distraction and focus-stealing18.345

• We recommend encouraging application developers to use Notifications346

instead.347

• Some programs ported from non-Apertis environments might rely on the348

ability to create a window at any time as a way to get the user’s attention.349

If a program does this, the compositor must not display it or give it input350

focus until the user requests main window switching.351

16https://wiki.gnome.org/Design/OS/Notifications
17https://wiki.gnome.org/Design/OS/Notifications#See_Also
18https://en.wikipedia.org/wiki/Focus_stealing

10

https://wiki.gnome.org/Design/OS/Notifications
https://wiki.gnome.org/Design/OS/Notifications#See_Also
https://en.wikipedia.org/wiki/Focus_stealing
https://wiki.gnome.org/Design/OS/Notifications
https://wiki.gnome.org/Design/OS/Notifications#See_Also
https://en.wikipedia.org/wiki/Focus_stealing

– The compositor could handle this with no user distraction at all, by352

making the window available in the Main window selection list, but353

not showing it. However, this would not have the desired effect of354

informing the user that something has happened.355

– Additionally, the compositor could optionally provide a visual cue to356

the user while minimizing distraction, by behaving as though that357

program had requested a notification, with content based on the pro-358

gram and/or window title, and one action button which would bring359

the new window to the foreground.360

• If the window would exceed a limit on the number of simultaneous windows361

or graphical programs in an app-bundle, as described in Main window362

selection, the compositor must not display those excessive windows, and363

may terminate the graphical program.364

Non-graphical programs365

A previously non-graphical program could connect to the display server and366

create a new main window, becoming a graphical program.367

• Unresolved: what happens?368

– The simplest resolution would be to treat it as though it had always369

been graphical and was previously in the background, and apply the370

Focus-stealing requirements to it. Is this sufficient?371

– If there is a requirement that we are able to classify programs into372

(potentially) graphical and non-graphical in the manifest, with only373

graphical programs allowed to open windows, this would somewhat374

undermine the idea that there is no security boundary within an375

app-bundle.376

• If the window creation is allowed, it must be treated as though a graphical377

program in the background had opened that window, for the purposes of378

Focus-stealing prevention.379

Screenshots380

• A program from one app-bundle must not be able to copy the texture data381

of a window from a different app-bundle, which might contain confidential382

information. (Output confidentiality)383

– In particular, this forbids taking screenshots of a program from a384

different app-bundle.385

– The ability for programs in the same app-bundle to take screenshots386

of each other is optional. For “least-privilege”, we suggest that the387

platform should not allow app-bundles to request that the platform388

takes a screenshot of that app-bundle. The programs can communi-389

cate directly with each other to share their texture data, if desired,390

so the platform’s involvement is not needed.391

• A program from an app-bundle must not be able to copy the texture data392

of platform UI elements, which might contain confidential information.393

11

(Output confidentiality)394

– In particular, this forbids screenshots again.395

• Unresolved: Is there a requirement that specially privileged app-bundles396

must be able to take screenshots, bypassing these restrictions?397

– If this is required, we suggest an interface similar to GNOME Shell’s398

org.gnome.Shell.Screenshot D-Bus API, with which these privileged399

app-bundles can submit a request to the compositor, which the com-400

positor can accept or reject according to the permissions flags in that401

app-bundle’s manifest.402

• Screencasting or video recording is essentially equivalent to an ongoing403

stream of screenshots, and has equivalent requirements.404

Synthesized input405

• A program from one app-bundle must not be able to synthesize input406

events for delivery to a window in a different app-bundle, which could be407

used to force the target program to carry out undesired actions. (Input408

integrity)409

• A program from one app-bundle must not be able to synthesize input410

events for delivery to the compositor, which could be used to force the411

compositor or other programs to carry out undesired actions. (Input in-412

tegrity)413

Trusted input paths414

In some situations the platform may need to ask the user for input, in such a way415

that the user can be confident that their input will in fact go to the platform416

and not to a potentially malicious app-bundle. One prominent example of a417

trusted input path is the “Ctrl+Alt+Del to log in” mechanism in Windows418

operating systems: Windows does not allow ordinary applications to intercept419

this key sequence, which means that the user can be confident that the resulting420

login dialog actually belong to Windows, and not an ordinary application that421

is mimicking it.422

GNOME uses system-modal dialogs for a similar purpose when carrying out423

platform-related actions like asking for confirmation of a potentially dangerous424

system-wide action19 or when unlocking access to stored passwords20: to make425

it more difficult for an ordinary application to present the same visual effect,426

19https://wiki.gnome.org/Design/OS/AuthorizationDialog
20https://wiki.gnome.org/Design/OS/KeyringDialog

12

https://wiki.gnome.org/Design/OS/AuthorizationDialog
https://wiki.gnome.org/Design/OS/AuthorizationDialog
https://wiki.gnome.org/Design/OS/AuthorizationDialog
https://wiki.gnome.org/Design/OS/KeyringDialog
https://wiki.gnome.org/Design/OS/AuthorizationDialog
https://wiki.gnome.org/Design/OS/KeyringDialog

GNOME .427

• The compositor must be able to request input from the user regardless of428

any other factors, for example application windows or notifications. For429

example, if this is done via system-modal dialogs like the ones in GNOME,430

then the system-modal dialog must replace or be displayed “above” all431

application or notification windows. (Availability, integrity)432

• Other platform components might need to request input from the user in433

a similar way.434

– We anticipate that this would be implemented by providing a privileged435

API on the compositor that is only accessible by those components.436

• Unprivileged app-bundles must not be able to make equivalent requests.437

(Output integrity; output availability for everything else)438

• The trusted input path must be displayed in such a way that only the439

compositor or another trusted service can produce the same visual result,440

for example by displaying it over the top of Platform UI elements in a441

way that would not be possible or would not be allowed for an ordinary442

application window. (Output integrity, input integrity)443

– This is an example of a trusted output path; see References.444

Interaction with the automotive domain445

If the Apertis device (infotainment domain, CE domain) shares its input and out-446

put device with a separate automotive domain21, graphics from the automotive447

domain must in general be displayed “above” anything from the infotainment448

domain. As an exception, if the relevant surfaces in the automotive domain449

are associated with something for which input and output availability and in-450

tegrity does not need to be preserved against a potentially hostile infotainment451

domain, they may be displayed differently. For example, if the main navigation452

view in a navigation app is to be displayed by the automotive domain, it could453

21https://martyn.pages.apertis.org/apertis-website/glossary/#automotive-domain

13

https://martyn.pages.apertis.org/apertis-website/glossary/#automotive-domain
https://martyn.pages.apertis.org/apertis-website/glossary/#automotive-domain

be displayed in the same way as an ordinary app window originating from the454

infotainment domain.455

The requirements in this document can be re-stated for the compositor in the456

automotive domain, with the infotainment domain taking on the role of an ordi-457

nary application from the automotive compositor’s point of view. For example,458

Synthesized input requires that ordinary applications cannot send input events459

to the infotainment compositor or to each other. The corresponding require-460

ment for the automotive compositor is that the infotainment domain must not461

be able to send input to the automotive compositor, or to another client of the462

automotive compositor (if there are others).463

The UX of the automotive domain might reserve particular areas of the screen for464

platform UI and/or a trusted path. If it does, the compositor in the infotainment465

domain must avoid relying those areas for its own UX (either for application466

windows or its own platform UI), because they would never be visible in practice:467

the automotive domain would draw its UI elements “above” the output of the468

compositor.469

Unresolved: Are trusted input and output paths to the automotive domain470

within the scope of this document?471

Design notes472

Some of these requirements are known to be impossible to meet in X1122, so we473

do not aim to solve them there.474

Platform features which are likely to be useful in implementing this:475

• Wayland surfaces are not displayed unless the compositor chooses to do476

so. If we can write down whatever policy is required for a particular UX,477

then the compositor can be programmed to have exactly that policy.478

• The Wayland protocol operates via an AF_UNIX socket23, just like D-479

Bus, so we can identify peer applications by their AppArmor profile and480

uid using the same credentials-passing mechanisms that we already use in481

D-Bus.482

– Wayland already has API for the uid/gid/pid. Similar API for the483

LSM context should be straightforward to add.484

Recommendations485

not yet written486

22http://www.mupuf.org/blog/2014/02/19/wayland-compositors-why-and-how-to-
handle/

23http://wayland.freedesktop.org/docs/html/ch04.html

14

http://www.mupuf.org/blog/2014/02/19/wayland-compositors-why-and-how-to-handle/
http://wayland.freedesktop.org/docs/html/ch04.html
http://www.mupuf.org/blog/2014/02/19/wayland-compositors-why-and-how-to-handle/
http://www.mupuf.org/blog/2014/02/19/wayland-compositors-why-and-how-to-handle/
http://wayland.freedesktop.org/docs/html/ch04.html

Further reading487

• http://www.mupuf.org/blog/2014/02/19/wayland-compositors-why-488

and-how-to-handle/489

• Trusted paths: for example User Interaction Design for Secure Systems490

(Ka-ping Yee, 2002)24491

24http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.65.5837

15

http://www.mupuf.org/blog/2014/02/19/wayland-compositors-why-and-how-to-handle/
http://www.mupuf.org/blog/2014/02/19/wayland-compositors-why-and-how-to-handle/
http://www.mupuf.org/blog/2014/02/19/wayland-compositors-why-and-how-to-handle/
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.65.5837
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.65.5837
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.65.5837
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.65.5837

	Background
	Other platforms

	Use-cases
	Home screen
	Platform UI elements
	Launching a program
	Last-used mode
	Main window selection
	Child windows
	Notifications
	Focus-stealing
	Non-graphical programs
	Screenshots
	Synthesized input
	Trusted input paths
	Interaction with the automotive domain

	Design notes
	Recommendations
	Further reading

