
Infrastructure maintenance automation

Contents1

Goals 22

Data-driven . 23

Git-controlled . 24

Idempotent . 25

Scalable . 26

Single source of truth . 27

Reproducible . 38

Explicit . 39

Basic approach 310

Add test mode for current branching scripts 311

Improve coverage of current branching scripts 312

Longer term approach 313

Centralized metadata . 414

Per-repository branching operations 515

Implementation 516

Add test mode for current branching scripts 517

Improve coverage of current branching scripts 518

Centralized metadata . 519

Per-repository branching operations 720

This document describes the goals and the approaches for automating the man-21

agement of the infrastructure used by Apertis. It will focus in particular on22

release branching since the new release flow1 implies that Apertis will need23

to go through that process two or three times more than in the past on each24

quarter.25

Goals26

Data-driven27

Separating the description of the desired infrastructure state from the tools to28

apply it nicely separates the two concerns: in most cases the tools won’t need29

to be updated during branching, only the desired infrastructure state changes.30

Git-controlled31

Basing everything on configuration stored in a Git repository has several advan-32

tages:33

• all the changes are tracked over time34

1https://martyn.pages.apertis.org/apertis-website/policies/release-flow/#apertis-release-
flow

2

https://martyn.pages.apertis.org/apertis-website/policies/release-flow/#apertis-release-flow
https://martyn.pages.apertis.org/apertis-website/policies/release-flow/#apertis-release-flow
https://martyn.pages.apertis.org/apertis-website/policies/release-flow/#apertis-release-flow

• the standard Apertis workflows based on GitLab merge requests can be35

used to review changes36

• fine access controls can be configured via GitLab37

Idempotent38

Every tool should compare the current state with the desired one and not pro-39

duce errors when they already match. Administrators should be able to run the40

tools at any time, multiple times, without any ill effect.41

Scalable42

The Apertis infrastructure is composed of enough services that a centralized list43

of things to update when branching is doomed to be outdated every quarter.44

Single source of truth45

The duplication of the same information between modules should be minimized,46

such that updating the single source of truth automatically produces effects on47

the depending modules.48

Reproducible49

Running the tools in a standardized, easily reproducible environment enables50

all the administrators to easily deploy changes without any special setup.51

Explicit52

All the needed information should be explicitly encoded in metadata repository.53

The tools using it should strive to not make any assumption on the data and54

derive more information out of it. This is another facet of ensuring that the55

metadata repository remains the single source of truth.56

Basic approach57

The basic approach aims at improving the current branching scripts to make58

them easier to test by developers, enabling more people to work on them, and59

to extend them to fully handle the complete branching process.60

Add test mode for current branching scripts61

At the moment the quarterly release branching is done through a set of scripts262

that get invoked manually by one the Apertis infrastructure team member from63

their machine.64

2https://gitlab.apertis.org/infrastructure/apertis-infrastructure/-/tree/main/release-
scripts

3

https://gitlab.apertis.org/infrastructure/apertis-infrastructure/-/tree/main/release-scripts
https://gitlab.apertis.org/infrastructure/apertis-infrastructure/-/tree/main/release-scripts
https://gitlab.apertis.org/infrastructure/apertis-infrastructure/-/tree/main/release-scripts

They act directly on the live services using the caller’s accounts.65

The first step for improving the branching automation is to add a “dry-run”66

mode to all the current release scripts to let developers and admin run them67

Improve coverage of current branching scripts68

The scripts currently in charge of reducing the manual intervention during the69

branching process do not cover all services and repositories which are part of70

Apertis.71

Once the “dry-run” mode is in place, new steps need to be added to the branch-72

ing scripts to cover the missing services and repositories.73

Longer term approach74

Larger refactorings are needed to align the current infrastructure to the goals75

previously described.76

The following sections describe the steps needed to further improve the infras-77

tructure maintenance to make it more robust and require less effort to manage.78

Centralized metadata79

A new git repository contains the principal metadata about the whole Apertis80

infrastructure describing:81

• the currently active release branches82

– e.g. v2020pre, v2019, etc.83

• their phase in the release lifecyle84

– e.g. development, preview, stable85

• their release status86

– e.g. frozen, release-candidate, released87

• the release from which they get branched from:88

– e.g. 2019pre for both v2019 and v2020dev089

• the matching git branch name90

– e.g. apertis/v201991

• the APT components they ship92

– e.g. target, development, sdk, hmi93

• etc.94

This provides a git-controlled single source of truth: tools are updated to fetch95

the information they need from this repository.96

For instance, the creation of OBS projects should be handled by a tool that:97

• fetches the above YAML98

• checks the current OBS configuration99

• computes the changes needed compared to the desired state, if any100

4

• applies the changes, if any, to align the actual state to the desired state,101

providing an idempotent solution102

• runs from a GitLab pipeline, providing a reproducible environment that103

can be either triggered by changes in the main data repository or manually104

The current infrastructure encodes a lot of information about the releases in105

several places: tools should be changed to fetch such information on the fly from106

the main data repository or GitLab pipelines should be configured to monitor107

the main data repository and automatically apply changes accordingly.108

For instance, the LAVA job templates encode the branch name of the release109

they track in multiple places. Either the templates can be enhanced to fetch110

the information on the fly from the main data repository, or a pipeline should111

be configured in a dedicated branch in the repository to monitor the main data112

repository and branch/update the repository accordingly.113

The change compared to the current approach is to minimize the amount of114

information that needs to be branched and distribute the branching logic closer115

to the entity to be branched. This is meant to avoid the recurring issues where116

the current centralized branching scripts failed to branch things properly or did117

not include new components to be branched at all.118

Per-repository branching operations119

For most repositories it is sufficient to add a new git ref when branching for a120

new release. In particular, nearly all the the packaging ones do not need any121

change to the repository contents and creating a new ref is enough.122

Other repositories need instead some changes to be applied to the contents once123

a new release branch is created. A common reason is that the release name is124

encoded in some file, which means that the file needs to be updated and the125

change needs to be committed and pushed.126

By making branching self-contained in the repositories, moving and renaming127

them no longer cause breakage. It also gives full control over the branching128

of a repository to the people managing that repository, rather than those who129

manage the centralized repository. This can be especially useful for components130

not managed by the core Apertis team, owned instead by product-specific teams.131

In general, keeping the branching operation in the same place as the rest of the132

contents helps in keeping them coeherent and makes testing easier.133

Implementation134

Add test mode for current branching scripts135

Setting the NOACT=y environment variable causes the branching scripts to run in136

test mode, without actually launching the branching commands.137

5

Improve coverage of current branching scripts138

New actions need to be taken when branching a new release.139

This is a non exhaustive list:140

• branch LAVA job templates;141

• update the configuration on GitLab repositories to create the new release142

branch, make it the default, etc.;143

• create the relevant :snapshots repositories on OBS;144

• add support for the security, updates and backports repositories when145

branching stable releases.146

Centralized metadata147

The centralized information can be modeled as YAML, for instance:148

6

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

.common_components: &common_components

- target

- development

- sdk

- hmi

projects:

apertis:

releases:

v2019:

lifecycle: stable

status: released

branched-from: v2019pre

branch-name: apertis/v2019

upstream: debian/buster

obs-build-suffix: v2019.0

suites:

v2019:

obs-pattern: '$project:$release:$component'

components: *common_components

v2019-updates:

obs-pattern: '$project:$release:updates:$component'

components: *common_components

v2019-security:

obs-pattern: '$project:$release:security:$component'

components: *common_components

infrastructure-packages:

obs: apertis:infrastructure:v2019

suite: infrastructure-v2019

components:

- buster

v2020dev0:

lifecycle: development

status: frozen

branched-from: v2019pre

branch-name: apertis/v2020dev0

upstream: debian/buster

obs-build-suffix: v2020dev0

suites:

v2020dev0:

obs-pattern: '$project:$release:$component'

components: *common_components

infrastructure-packages:

obs: apertis:infrastructure:v2019

suite: infrastructure-v2019

components:

- buster

7

Per-repository branching operations149

A release-branching step should be added to the GitLab CI pipeline YAML in150

the repository with the purpose of ensuring that the release-specific contents151

match the branch name.152

GitLab does not provide any way to execute an action only when a new ref153

is created so the best strategy is to ensure that the release-branching script is154

idempotent and gets run when changes land to any apertis/* refs: if no changes155

are detected the step succeeds with no further operations, otherwise it commit156

and push the changes automatically, or it submits a MR to be reviewed before157

landing the changes.158

8

	Goals
	Data-driven
	Git-controlled
	Idempotent
	Scalable
	Single source of truth
	Reproducible
	Explicit

	Basic approach
	Add test mode for current branching scripts
	Improve coverage of current branching scripts

	Longer term approach
	Centralized metadata
	Per-repository branching operations

	Implementation
	Add test mode for current branching scripts
	Improve coverage of current branching scripts
	Centralized metadata
	Per-repository branching operations

