
Inter-domain communication

Contents1

Terminology and concepts . 22

Automotive domain . 23

Consumer-electronics domain . 24

Connectivity domain . 35

Trusted path . 36

Control stream . 37

Data stream . 48

Traffic control . 49

Use cases . 410

Standalone setup . 411

Basic virtualised setup . 412

Linux container setup . 513

Separate CPUs setup . 514

Separate boards setup . 515

Separate boards setup with other devices 616

Multiple CE domains setup . 617

Touchscreen events . 618

Wi-Fi access . 719

Bluetooth access . 720

Audio transfer . 821

Video decoding . 922

Streaming media . 1023

Downloads of firmware updates 1024

Offline and online map data . 1025

Phonebook integration . 1026

Tinkering vehicle owner on the network 1127

Tinkering vehicle owner on the boards 1128

Support multiple AD operating systems 1129

Before-market upgrades . 1130

After-market upgrades . 1231

Testability . 1232

Malicious CE . 1233

Malicious CD . 1234

After-market upgrade of a domain 1235

Power cycle independence of domains (CE down) 1336

Power cycle independence of domains (AD down, single screen) . 1337

Power cycle independence of domains (AD down, multiple screens) 1338

Temporary communications problem 1439

New version of AD software . 1440

New version of AD interfaces . 1441

Unsupported AD interfaces . 1542

Contacts sharing . 1543

Protocol compatibility . 1544

Navigation system . 1645

2

Marshalling resource usage . 1646

Feedback for malicious applications 1647

Compromised CE with delayed fix 1648

Denial of service through flooding 1749

Malicious CE UI . 1750

Plug-and-play CE device . 1751

Connecting an SDK to a development vehicle 1752

Security model . 1853

Attackers . 1854

Security domains . 2055

Security model . 2056

Non-use-cases . 2157

Production CE domain used in multiple configurations 2158

Requirements . 2259

Separated transport layer . 2260

Message integrity and confidentiality in transport layer 2361

Reliability and error checking in transport layer 2362

Mutual authentication between domains 2363

Separate authentication for developer and production mode devices 2364

Individually addressed domains 2365

Traffic control for latency . 2466

Traffic control for bandwidth . 2467

Traffic control for frequency . 2468

Separation of control and data streams 2469

No untrusted access to AD hardware 2470

Trusted path for users to update the CE operating system 2571

Safety limits on AD APIs . 2572

Rate limiting on control messages 2573

Ignore unrecognised messages . 2674

Portable transport layer . 2675

Support push mode and pull mode communications 2676

OEM AD integration API . 2677

Flexibility in OEM AD integration API 2678

Inflexibility in OEM AD integration API 2779

Service discovery . 2780

Stability in inter-domain communications protocol 2781

Testability of protocols . 2782

Testability of protocol parsers and writers 2883

Testability of processes . 2884

CE system services separated from transport layer 2885

No dependency on CE specific hardware 2886

Immediate error response if service on peer is unavailable 2987

Immediate error response if peer is unavailable 2988

Timeout error response if peer does not respond 2989

All inter-domain communications APIs are asynchronous 2990

Reconnect to peer as soon as it is available 3091

3

External domain watchdog . 3092

Reporting system for malicious applications 3093

Ability to disable the consumer–electronics domain 3094

Tamper evidence . 3195

No global keys in vehicles . 3196

Existing inter-domain communication systems 3197

Approach . 3198

Overall architecture . 3299

Security domains . 34100

Protocol design . 35101

Traffic control . 52102

Protocol library and inter-domain services 53103

Non Linux-based domains . 54104

Service discovery . 55105

Automotive domain export layer 56106

Consumer-electronics domain adapter layer 57107

Interaction of the export and adapter layers 58108

Flow for a given SDK API call 59109

Trusted path to the AD . 60110

Developer mode . 60111

Mock SDK implementation . 60112

Debuggability . 61113

External watchdog . 62114

Tamper evidence and hardware encryption 63115

Disabling the CE domain . 64116

Reporting malicious applications 65117

Suggested roadmap . 66118

Requirements . 66119

Open questions . 66120

Summary of recommendations . 67121

Appendix: D-Bus components and licensing 67122

Licensing . 68123

Appendix: D-Bus performance . 68124

Appendix: Software versus hardware encryption 69125

Software encryption (without encryption acceleration instructions) 70126

Software encryption (with encryption acceleration instructions) . 70127

Secure cryptoprocessor . 71128

Hardware security module . 71129

Conclusion . 72130

Appendix: Audio and video streaming standards 72131

Appendix: Multiplexing RTP and RTCP 73132

Appendix: Audio and video decoding 74133

Memory bandwith usage on the i.MX6 Sabrelite 75134

Security Vulnerabilities in GStreamer 75135

This documents a suggested design for an inter-domain communication sys-136

4

tem, which exports services between different domains. Some domains can be137

trusted such as the automotive domain. Some domains are untrusted such as138

the consumer-electronics domain. Those domains can execute on a variety of139

possible configurations.140

The major considerations with an inter-domain communication system are:141

• Security. The purpose of having separate domains is for security, so that142

untrusted code (application bundles) can be run in one domain while min-143

imizing the attack surface of the safety-critical systems which drive the144

car.145

• Flexibility for different hardware configurations. The domains may be146

running in one of many configurations: virtualised under a hypervisor;147

on separate CPUs on the same board; on separate boards connected by148

a private in-vehicle network; as separate boards connected to a larger in-149

vehicle network with unrelated peers on it; in separate containers.150

• Flexibility for services exposed. The services exposed by the automo-151

tive domain are dependent on the vendor which implemented the automo-152

tive domain. The consumer-electronics domain depends on third-parties.153

Their update and enhancement cycle and security rules may differ.154

• Asynchronism and race conditions. This is a distributed system, and hence155

is subject to all of the challenges1 typical of distributed systems.156

Terminology and concepts157

Automotive domain158

The automotive domain (AD) is a security domain which runs automotive pro-159

cesses, with direct access to hardware such as audio output or the in-vehicle bus160

(for example, a CAN bus or similar).161

In some literature this domain is known as the ‘blue world’. This document will162

consistently use the term automotive domain or AD.163

Consumer-electronics domain164

The consumer-electronics domain (CE domain; CE) is a security domain which165

runs the user’s infotainment processes, including downloaded applications and166

processing of untrusted content such as downloaded media. Apertis is one im-167

plementation of the CE domain.168

In some literature this domain is known as the ‘red world’, ‘infotainment do-169

main’ or ‘IVI domain’. This document will consistently use the term consumer-170

electronics domain or CE domain or CE.171

1https://www.cl.cam.ac.uk/teaching/1516/ConcDisSys/materials.html

5

https://www.cl.cam.ac.uk/teaching/1516/ConcDisSys/materials.html
https://www.cl.cam.ac.uk/teaching/1516/ConcDisSys/materials.html

Connectivity domain172

In some setups the AD and CE are not directly exposed to external networks and173

hardware. In those cases a connectivity domain hosts agents which can directly174

access the Internet or plug-and-play hardware devices such as USB keys, SD175

cards or Bluetooth devices and provide their services to applications running in176

the more isolated domains. This domain can be referred to as CD.177

Trusted path178

A trusted path2 is an end-to-end communications channel from the user to a179

specific software component, which the user can be confident has integrity, and180

is addressing the component they expect. This encompasses technical security181

measures, plus unforgeable UI indications of the trusted path.182

An example of a trusted path is the old Windows login screen, which required183

the user to press Ctrl+Alt+Delete to open the login dialogue. If a malicious ap-184

plication was impersonating the login dialogue, pressing Ctrl+Alt+Delete would185

open the task manager instead of the login dialogue, exposing the subversion.186

In the context of Apertis, an example situation calling for a trusted path is187

when the user needs to interact with a UI provided by the AD. They must be188

sure that this UI is not being forged by a malicious application running in the189

CE.190

Control stream191

A control stream is a network connection which transmits low bandwidth, la-192

tency insensitive messages which typically contain metadata about data being193

transferred in a data stream. In networking, it is sometimes known as the control194

plane.195

A control stream for one protocol may be treated as a data stream if it is being196

carried by a higher layer (or wrapper) protocol, as the control data in the stream197

is meaningless to the higher layer protocol.198

If a designer is concerned about whether a particular stream’s performance199

requirements make it suitable for running as a control stream, it almost certainly200

is not a control stream, and should be treated as a data stream. A new control201

protocol should be built to carry more limited metadata about it.202

A control stream can operate without a data stream (for example, if there is no203

performance-sensitive data to transmit).204

Data stream205

A data stream is a network connection which transmits the data referred to by206

a control stream. This data may be high bandwidth or latency sensitive, or it207

2https://en.wikipedia.org/wiki/Trusted_path

6

https://en.wikipedia.org/wiki/Trusted_path
https://en.wikipedia.org/wiki/Trusted_path

may be neither. In networking, it is sometimes known as the data plane.208

A data stream cannot operate without an associated control stream (which209

carries its metadata).210

Traffic control211

Traffic control (or bandwidth management3) is the term for a variety of tech-212

niques for measuring and controlling the connections on a network link, to try213

and meet the quality of service requirements for each connection, in terms of214

bandwidth and latency.215

Use cases216

A variety of use cases which must be satisfied by an inter-domain communication217

system are given below. Particularly important discussion points are highlighted218

at the bottom of each use case.219

All of these use cases are relevant to an inter-domain communication system,220

but some of them (for example, Video or audio decoder bugs) may equally well221

be solved by other components in the system.222

Standalone setup223

An app-centric consumer electronics domain (CE) is running in a virtual ma-224

chine on a developer’s laptop, and they are using it to develop an application for225

Apertis. There is no automotive domain (AD) for this CE to run against, but it226

must provide all the same services via its SDK APIs as the CE running in a ve-227

hicle which has an Apertis device. The CE must run without an accompanying228

AD in this configuration.229

Basic virtualised setup230

An embedded automotive domain (AD) and an app-centric consumer electronics231

domain (CE) are running as separate virtualised operating systems under a232

hypervisor, in order to save costs on the bill of materials by only having one233

board and CPU. The AD has access to the underlying physical hardware; the234

CE does not. The two domains have a high bandwidth connection to each other235

(for example, Ethernet, USB, PCI Express or virtio). The two domains need to236

communicate so that the CE can access the hardware controlled by the AD.237

Linux container setup238

Containers are based on Linux kernel containment features, including, but not239

limited to, Linux kernel namespaces, control groups, chroots (pivot_root), ca-240

pabilities.241

3https://en.wikipedia.org/wiki/Bandwidth_management

7

https://en.wikipedia.org/wiki/Bandwidth_management
https://en.wikipedia.org/wiki/Bandwidth_management

Both AD and CE are dedicated Linux containers on a host directly running on242

the hardware or in a virtual machine. AD is allowed to access safety-sensitive243

devices. CE is not allowed any access to safety-sensitive devices but may be able244

to access external devices like smartphones over Bluetooth, USB mass storage245

or security keys.246

Communication is based on the Unix Domain Sockets (UDS) mechanism pro-247

vided by the Linux kernel.248

This setup can be used both for production setups on hardware board and on249

a developer’s system for Apertis application development. It can be possible to250

provide a fake AD container for emulation and testing purposes.251

Isolation between containers is unavoidably limited when compared to the isola-252

tion between virtual machines, just like separate boards provide more isolation253

than VMs. This is due to the fact that a single kernel is shared by all contain-254

ers. However in this document we assume processes are not able to escape from255

the isolated environment or get access to resources on the host system or other256

containers for which they haven’t been explicitly granted access.257

Multiple CE domains are allowed with the above setup. In this setup, a Con-258

nectivity Domain can also coexist with AD and CE. It is responsible for any259

interaction with external networks and provides isolation in the case a network260

stack is compromised when that stack is not implemented in the shared kernel.261

Separate CPUs setup262

The AD is running on one CPU, and the CE is running on another CPU on the263

same board. The two CPUs have separate memory hierarchies. They maybe264

using separate architectures or endianness. The AD has access to all of the265

underlying physical hardware; the CE only has access to a limited number of266

devices, such as its own memory and some kind of high bandwidth connection267

to the AD (for example, Ethernet, USB, or PCI Express). The two domains268

need to communicate so that the CE can access the hardware controlled by the269

AD.270

Separate boards setup271

The AD is running on one mainboard, and the CE is running on another main-272

board, which is physically separate from the first. They may be using separate273

architectures or endianness. The two boards are connected by some kind of274

vehicle network (for example, Ethernet; but other technologies could be used).275

There are no other devices on this network. The vehicle owner (and any other276

attacker) might have physical access to this network. The AD has access to277

various devices which are connected to its board and not to the CE’s board.278

The two domains need to communicate so that the CE can access the hardware279

controlled by the AD.280

8

Separate boards setup with other devices281

The AD is running on one mainboard, and the CE is running on another main-282

board, which is physically separate from the first. They may be using separate283

architectures or endianness. The two boards are connected by some kind of284

vehicle network (for example, Ethernet; but other technologies could be used).285

There are many other devices on this network, which are addressable but whose286

traffic is irrelevant to the CE–AD connection (for example, a telematics modem,287

or a high-end amplifier). The vehicle owner (and any other attacker) might have288

physical access to this network. The AD has access to various devices which are289

connected to its board and not to the CE’s board. The two domains need to290

communicate so that the CE can access the hardware controlled by the AD.291

(Note: This is a much lower priority than other setups, but should still be292

considered as part of the overall design, even if the code for it will be implemented293

as a later phase.)294

Multiple CE domains setup295

The AD is running on one mainboard. Multiple CE domains are running, each296

on a separate mainboard, each physically separate from each other and from the297

AD. The boards are connected by some kind of vehicle network (for example,298

Ethernet; but other technologies could be used). There are many other devices299

on this network, which are addressable but whose traffic is irrelevant to the CE–300

AD connections (for example, a telematics modem, or a high-end amplifier).301

The vehicle owner (and any other attacker) might have physical access to this302

network. The AD has access to various devices which are connected to its board303

and not to the CEs’ boards. Each CE domain needs to communicate with the304

AD so that it can access the hardware controlled by the AD.305

(Note: This is a much lower priority than other setups, but should still be306

considered as part of the overall design, even if the code for it will be implemented307

as a later phase.)308

Touchscreen events309

The touchscreen hardware is controlled by the AD, but content from the CE is310

displayed on it. In order to interact with this, touch events which are relevant to311

content from the CE must be forwarded from the AD to the CE. Users expect312

a minimal latency for touch screen event handling. Touchscreen events must313

continue to be delivered reliably and on time even if there is a large amount314

of bandwidth being consumed by other inter-domain communications between315

AD and CE.316

Wi-Fi access317

The Wi-Fi hardware is controlled by the AD or CD. The CE needs to use it318

for internet access, including connecting to a network. The Wi-Fi device can319

9

return data at high bandwidth, but also has a separate control channel. The320

control channel always needs to be available, even if traffic is being dropped due321

to bandwidth limitations in the inter-domain communication channel.322

As the Wi-Fi is used for general internet access, sensitive information might323

be transferred between domains (for example, authentication credentials for a324

website the user is logging in to). Attackers who are snooping the inter-domain325

connection must not be able to extract such sensitive data from the inter-domain326

communications link.327

(Note that they may still be able to extract sensitive data from insecure con-328

nections over the wireless connection itself, or elsewhere in transit outside the329

vehicle; so any solution here is the best mitigation we can manage for the problem330

of a website being insecure.)331

Bluetooth access332

The Bluetooth hardware might be attached to the AD or CD. The CE needs333

to be able to send data bi-directionally to other Bluetooth devices and also334

needs to be able to control the Bluetooth device, controlling pairing and other335

functions of the Bluetooth hardware.336

To support the A2DP and HSP/HFP audio profiles it may be desirable to keep337

the CE in charge of decoding and encoding the audio streams coming from338

and directed to the Bluetooth devices. The AD will be responsible for mixing339

the output streams directed to the car speakers and capturing input streams340

(possibly with noise cancellation) from the car microphones.341

The following diagrams depict the data and control flow when the Bluetooth342

device is attached to the AD.343

Sending audio stream from BT to AD344

BT device AD CE345

| --- attach ---> | |346

| --------- encoded audio ---------> |347

| | <--- decoded audio --- |348

(mixing decoded audio in AD)349

Sending audio stream from AD to BT350

BT device AD CE351

| --- attach ---> | |352

| | ---- LPCM audio ----> |353

| <-------- encoded audio --------- |354

The following diagram depicts the data and control flow when the Bluetooth355

device is directly attached to the CE instead.356

BT device CE AD357

| --------- attach -----------> | |358

10

| <-------- control ---------- | |359

| | |360

| --------- encoded audio ----> | |361

| | ------- LPCM audio ---> |362

| | <------ LPCM audio ---- |363

| <-------- encoded audio ----- |364

The following diagram depicts the data and control flow when the Bluetooth365

device is directly attached to the CD.366

BT device CD CE AD367

| ---- attach -----------> | | |368

| <--- control ---------- | | |369

| | <---- scan ----- | |370

| | ---- result ---> | |371

| | <---- play ----- | |372

| | |373

| ---- encoded audio ----> | |374

| | --------- LPCM audio ------> |375

| | <-------- LPCM audio ------- |376

| <--- encoded audio ----- |377

Multiple variations are possible on this model.378

Audio transfer379

The audio amplifier hardware might be attached to the AD hardware, or might380

be set up as a separate hardware amplifier attached to the in-vehicle network.381

The CE needs to be able to send multiple streams of decoded audio output382

to the AD, to be mixed with audio output from the AD according to some383

prioritisation logic.384

The decoded audio streams should be in LPCM format, but other formats may385

be negotiated by the domains using application specific APIs.386

Metadata can be sent alongside the audio, such as track names or timing infor-387

mation.388

Audio output needs predictable latency output, and for video conferencing it389

needs low latency as well; conversely, some level of packet loss is acceptable for390

audio traffic. However, the latency should not exceed a certain amount of time391

in some specific cases:392

• Voice recognition systems provided through phone integration require that393

the maximum latency of the audio buffer from the time it gets captured394

by the microphone controlled by the AD to the time it gets delivered to395

the phone attached to the CE domain must not exceed 35ms.396

• Text-to-speech systems provided through phone integration require that397

the maximum latency of the audio buffer from the time it is received by398

11

the CE domain from the attached phone to the time it gets played back399

on the speakers attached to the AD must not exceed 35ms.400

• The total round-trip time must not exceed 275ms when the phone is at-401

tached to the CE domain through a wired transports (for instance, USB402

CDC-NCM as used by CarPlay or the Android Open Accessory Protocol)403

and 415ms on wireless transports (WiFi in particular, Bluetooth A2DP is404

not recommended in this case).405

• Bluetooth SCO can be used when there is a latency constraint. It will406

be lower quality, but the transfer time over the air is guaranteed. The407

whole audio chain needs to satisfy the latency condition though. This408

is why in some setup, the Bluetooth audio is routed directly to the AD409

amplifier. When this is the case, an API to enable this link is provided by410

the domain that owns the Bluetooth hardware. It can be the AD, or the411

CD embedding a Bluetooth stack. The API calls would be issued by the412

CE domain.413

Video decoding414

There might be a specific hardware video decoder attached to the AD hardware,415

which the CE operating system wishes to use for offloading decoding of trusted416

or untrusted video content. This is high bandwidth, but means that the output417

from the video decoder could potentially be directed straight onto a surface on418

the screen.419

(See the appendix on Audio and video decoding for a discussion of options for420

video and audio decoding.)421

Video or audio decoder bugs422

The CE has a software video or audio decoder for a particular video or audio423

codec, and a security critical bug is found in this decoder, which could allow424

malicious video or audio content to gain arbitrary code execution privileges when425

it’s decoded. An update for the Apertis operating system is released which fixes426

this bug, and users need to apply it to their vehicles. To reduce the window of427

opportunity for exploitation, this update has to be applied by the vehicle owner,428

rather than taking the vehicle into a garage (which could take weeks).429

For example, like the series of exploitable bugs which affected the ‘secure’ media430

decoding library on Android4 in 2015.431

This means we cannot securely support decoding untrusted video or audio con-432

tent in the AD, due to its slow software update cycle, unless we use a hardware433

video decoder which is specifically designed to cope with malicious inputs.434

4https://en.wikipedia.org/wiki/Stagefright_(bug)

12

https://en.wikipedia.org/wiki/Stagefright_(bug)
https://en.wikipedia.org/wiki/Stagefright_(bug)
https://en.wikipedia.org/wiki/Stagefright_(bug)
https://en.wikipedia.org/wiki/Stagefright_(bug)

Streaming media435

The media player backend on the CE accesses local files or internet streams and436

sends the streams to the Media Player HMI running in the AD. The CE might437

be able to perform demuxing, decoding or at least partly verifying the streams.438

The AD might accept fully decoded streams, but the media file or stream is usu-439

ally encoded and multiplexed. In some cases, the multiplexed stream can have440

synchronization sensitive metadata like subtitles. Therefore, if demuxing and441

decoding are performed in different domains, the AD should support multiple442

channels and mix the streams with time synchronization information.443

It is also possible that the AD sends the stream to the CE. For example, in444

the case of Internet phone applications, the CE provides the HMI and needs to445

be able to capture video and audio streams from the AD, before encoding and446

multiplexing them on the CE.447

When handling data streams that don’t need strict synchronization, the bulk448

data transfer mechanism is recommended. For example, sharing still pictures449

does not require real time processing so it is not suited for the streaming media450

mechanism.451

Downloads of firmware updates452

An OTA update agent in the Connectivity domain downloads or retrieves from453

an attached USB stick firmware images as large as 20GB each and needs to454

share them with the Automotive domain where the FOTA backend can flash455

the attached devices.456

Since firmware are very large, storing them twice should be avoided as the457

available space may not be sufficient to do so.458

Offline and online map data459

An offline map agent in the Connectivity domain downloads map data for offline460

usage by the navigation system running in the Automotive domain.461

Conversely, an online map agent in the Connectivity domain handles requests462

from the Automotive domain for map tiles to download.463

Phonebook integration464

A phonebook agent in the Connectivity domain retrieves approximately 500465

256×256px profile pictures, validates and re-encodes them to PNG and makes466

them available to the Automotive domain, possibly using an uncompressed zip467

file instead of sharing 500 files.468

13

Tinkering vehicle owner on the network469

The owner of a vehicle containing an Apertis device likes to tinker with it,470

and is probing and injecting signals on the connection between the AD and471

CE, or even replacing the CE completely with a device under their control.472

They should not be able to make the automotive domain do anything outside473

its normal operating range; for example, uncontrolled acceleration, or causing474

services in the domain to crash or shut down.475

The tampering must be detectable by the vendor when the vehicle is serviced476

or investigated after an accident.477

Tinkering vehicle owner on the boards478

The owner of a vehicle containing an Apertis device likes to tinker with it,479

and has gained access to the bootloaders and storage for both the AD and CE480

boards. They have managed to add some custom software to the CE image,481

which is now sending messages to the AD which it does not expect. Or vice-482

versa. The domain receiving the messages must not crash, must ignore invalid483

messages, and must not cause unsafe vehicle behaviour.484

The tampering must be detectable by the vendor when the vehicle is serviced485

or investigated after an accident.486

Secure bootloading5 itself is a separate topic.487

Support multiple AD operating systems488

The OEM for a vehicle wants to choose the operating system used in the AD489

— for example, it might be GENIVI Linux, or QNX, or something else. There490

is limited opportunity to modify this operating system to implement Apertis-491

specific features. Whichever CE or CD system is installed needs to interface to492

it. Each AD operating system may expose its underlying hardware and services493

with a variety of different non-standardised APIs which use push- and pull-style494

APIs for transferring data. The OEM wishes to be provided with an inter-495

domain communication library to integrate into their choice of AD operating496

system, which will provide all the functionality necessary to communicate with497

Apertis as the CE or CD operating system.498

Before-market upgrades499

The OEM for a vehicle has chosen a specific version of an operating system for500

their AD, and has initially released their vehicle with Apertis 17.09 on another501

domain, such as CE and/or CD. For the latest incremental version of this vehicle,502

they want to upgrade the other domain to use Apertis 18.06. The OS in the503

AD cannot be changed, due to having stricter stability and testing requirements504

than the other domains.505

5https://martyn.pages.apertis.org/apertis-website/architecture/secure-boot/

14

https://martyn.pages.apertis.org/apertis-website/architecture/secure-boot/
https://martyn.pages.apertis.org/apertis-website/architecture/secure-boot/

After-market upgrades506

A user has bought a vehicle which runs Apertis 17.09 in its CE. Apertis 18.06507

is released by their car vendor, and their garage offers it as an upgrade to508

the user as part of their next car service. The garage performs this software509

upgrade to the CE, without having to touch the AD. It verifies that the system510

is operational, and returns the car to the user, who now has access to all the511

new features in Apertis 18.06 which are supported by their vehicle’s hardware.512

Testability513

When developing a new vehicle, an OEM wants to iterate quickly on changes514

to the CE, but also wants to test them thoroughly for compatibility against a515

specific AD version, to ensure that the two domains will work together. They516

want this testing to include a number of valid and invalid conversations between517

the CE and AD, to ensure that the two domains implement error handling (and518

hence a large part of their security) correctly.519

Malicious CE520

Somehow, a third party application installed onto the CE manages to compro-521

mise a system service and gain arbitrary code execution privileges in the CE.522

It uses these privileges to send malicious messages to the AD. From the user’s523

point of view, this could result in a loss of IVI functionality, and unexpected524

behaviour from vehicle actuators, but must not result in loss of control of the525

vehicle.526

Malicious CD527

Recent protocol failures have been discovered that allowed an attacker to take528

control of a device remotely. To mitigate this, the network management stack529

has been moved to a Connectivity Domain. The impact of those attacks must530

be minimised. While the CD functionality can be degraded, it must not result531

in loss of control of the vehicle.532

After-market upgrade of a domain533

A user has bought a vehicle containing a low-end Apertis device. They wish to534

upgrade to a more fully-featured Apertis device, and this hardware upgrade is535

offered by their garage. The garage performs the upgrade, which replaces the536

existing CE hardware with a new separate CE board. If the existing hardware537

combined the AD and CE on a single board or virtualised processor, the entire538

board is replaced with two new, separate boards, one for each domain (though539

as this is a complex operation, some garages or vendors might not offer it). If540

the existing hardware already had separate boards for the two domains, only541

the CE board is upgraded — this may be a service offered by all garages.542

15

Power cycle independence of domains (CE down)543

Due to a bug, the CE crashes. The AD must not crash, and must continue544

to function safely. It may display an error message to the user, and the user545

may lose unsaved data. Once the CE restarts, the AD should reconnect to it546

and reestablish a normal user interface. The CE should reboot quickly and the547

cross-domain state be restored as much as reasonable once restarted.548

Any partially-complete inter-domain communications must error out rather than549

remaining unanswered indefinitely.550

The same situation applies if both domains are booting simultaneously, but the551

CE is slower to boot than the AD, for example — the AD will be up before the552

CE, and hence must deal with not being able to communicate with it. See also553

Plug-and-play CE device.554

Power cycle independence of domains (AD down, single screen)555

On a system where the AD and CE are sharing a single screen, if the AD crashes,556

the CE must not crash, and may gracefully shut down, and only restart once the557

AD has finished rebooting. The AD should reboot quickly and the cross-domain558

state be restored as much as reasonable once restarted559

Any partially-complete inter-domain communications must error out rather than560

remaining unanswered indefinitely.561

The same situation applies if both domains are booting simultaneously, but the562

AD is slower to boot than the CE, for example — the CE will be up before the563

AD, and hence must deal with not being able to communicate with it. See also564

Plug-and-play CE device.565

Power cycle independence of domains (AD down, multiple screens)566

On a system with multiple output screens, if the AD crashes, the CE must not567

crash, and should continue to run on all its screens, as another user may be568

using the CE (without requiring any functionality from the AD) on one of the569

screens. Once the AD restarts, the CE should reconnect to it and reestablish570

a normal user interface on all screens. The AD should reboot quickly and the571

cross-domain state be restored as much as reasonable once restarted.572

Any partially-complete inter-domain communications must error out rather than573

remaining unanswered indefinitely.574

The same situation applies if both domains are booting simultaneously, but the575

AD is slower to boot than the CE, for example — the CE will be up before the576

AD, and hence must deal with not being able to communicate with it. See also577

Plug-and-play CE device.578

16

Temporary communications problem579

There is a temporary communications problem between a service on the AD580

and its counterpart on the CE. Either:581

• The service (on the AD or CE) has crashed.582

• There is a problem with the physical connection between the domains,583

such as dropped packets due to congestion; but both domains are still584

running fine.585

• The entire domain or its inter-domain communications service has crashed.586

The different situations can be detected by the parts of the stack which are still587

working588

If a service has crashed, the inter-domain communication service should return589

an appropriate error code to the other domain, which could propagate the error590

to a calling application, or wait for the other domain to restart that service and591

try again.592

If there is packet loss, the reliability in the inter-domain communication protocol593

should cause the lost packets to be re-sent. Services should wait for that to594

happen. If the communications problem continues longer than a timeout, the595

domains must assume that each other have crashed and behave accordingly.596

If a domain has crashed, the other domain must wait for it to be restarted via597

its watchdog, as in Power cycle independence of domains (CE down).598

In all cases, the domain which is still running must not shut down or enter a599

‘paused’ state, as that would allow denial of service attacks.600

New version of AD software601

An OEM has released a vehicle with version A of their AD operating system,602

and version 15.06 of Apertis running in the CE. For the next minor update to603

their vehicle, the OEM has made a number of changes to the underlying AD604

software, but not to its external interfaces. They wish to keep the same version605

of Apertis running in the CE and release the vehicle using this version B of their606

AD operating system, and version 15.06 of Apertis.607

New version of AD interfaces608

An OEM has released a vehicle with version A of their AD operating system,609

and version 15.06 of Apertis running in the CE. For the next minor update to610

their vehicle, the OEM has made a number of changes to the underlying AD611

software, and has changed a few of its external interfaces and exposed a few612

more vehicle-specific features in new interfaces. They want to make appropriate613

modifications to Apertis to align it with these changed interfaces, but do not614

wish to make major modifications to Apertis, and wish to (broadly) stick with615

17

version 15.06. They will release the vehicle using this version B of their AD616

operating system, and a tweaked version 15.06 of Apertis.617

In other words, this scenario applies only when the OEM has updated the AD,618

and wants to make a corresponding update to the CE. For the reverse scenario619

where the CE has been upgraded, it is required that the AD does not need to620

be updated: see Plug-and-play CE device and After market CE upgrades.621

Unsupported AD interfaces622

An OEM uses an AD operating system which exposes a large number of in-623

terfaces to various esoteric automotive components. Only a few of these com-624

ponents are currently supported by Apertis version A, which they are running625

in their CE. Apertis version B supports some more of these components, and626

exposes them in its SDK APIs. The OEM wishes to release a new version of the627

same vehicle, keeping the same version of the AD operating system, but using628

version B of Apertis and exposing the now-supported components in the SDK629

APIs.630

However, some of the other components which are exposed by the AD operating631

system in its inter-domain interface cannot be securely supported by Apertis (for632

example, they may allow unrestricted write access to the in-vehicle network).633

These should not be accessible by the SDK APIs at any time.634

Contacts sharing635

A vehicle maintains an address book in its AD operating system, which stores636

some of the user’s contacts on a removable SD card. The user interface, run by637

the CE, needs to be able to display and modify these contacts in the Apertis638

address book application.639

Protocol compatibility640

An older vehicle, using an old version A of some AD operating system was641

using a corresponding version A of Apertis in its CE. The CE operating system642

is upgraded to a recent version of Apertis, version B, by the garage when the643

vehicle is taken in for a service. This version of Apertis uses a much more recent644

version of the underlying software for the inter-domain communication protocol.645

It needs to continue to work with the old version A of the AD operating system,646

which is running a much older version of the protocol software.647

kdbus protocol compatibility648

If, for example, the inter-domain communication protocol is implemented using649

dbus-daemon in version A of the AD operating system, and in the corresponding650

version A of Apertis; and version B of Apertis uses kdbus instead of dbus-651

daemon, the two OSs must still communicate successfully.652

18

Navigation system653

A proprietary navigation system is running on the AD, with full access to the654

vehicle’s navigation hardware, including inertial sensors and a GPS receiver. A655

tour application on the CE wishes to use location-based services, reading the656

vehicle’s location from the navigation system on the AD, then requesting to the657

navigation service to set its destination to a new location for the next place658

in the tour. It sends a stream of points of interest to the navigation system659

to display on the map while the driver is navigating. This stream is not high660

bandwidth; neither are the location updates from the GPS.661

Marshalling resource usage662

The ‘proxy’ software on either side of the inter-domain connection which handles663

the low-level communication link is the first software in a domain to handle664

malicious input. If malicious input is sent to a domain with the intent of causing665

a denial of service in that software, the rest of the software in the domain should666

be unaffected, and should treat the connection as timing out or compromised.667

The behaviour of the proxy software should be confined so that it cannot use668

excess resources in the domain and hence extend the denial of service attack to669

the whole domain.670

Feedback for malicious applications671

If an application uses SDK APIs incorrectly (for example, by providing param-672

eters which are outside valid ranges), it may be reported to the Apertis store as673

a ‘misbehaving application’ and scheduled for further investigation and possible674

removal from the Apertis store. Similarly if the inter-domain communication675

APIs are used incorrectly (for example, if the AD returns an error stating that676

input validation checks have failed for an API call).677

This could also result in an application being blacklisted by the CE’s application678

manager, disallowing it from running in future until it is updated from the679

Apertis store.680

Compromised CE with delayed fix681

An attacker has somehow completely compromised the CE operating system,682

and has root access to it. It will take the OEM a few weeks to produce, test683

and distribute a fix for the exploit used by the attacker, but vehicle owners684

would like to continue to use their vehicles, with reduced functionality (no CE685

domain) in the meantime, because the attack has not compromised the AD.686

The OEM has provided them with an authenticated method of informing the687

AD to shut down the CE and keep it shut down until an authenticated update688

has been applied and has fixed the exploit and removed the attacker from the689

CE (probably by overwriting the entire OS with a fresh copy). This update can690

only be applied at a garage, but in order to allow speedy deployment, the user691

19

can switch the AD to this stand-alone mode themselves, using a trusted input692

path to the AD.693

Denial of service through flooding694

A speedometer application bundle constantly requests vehicle speed information695

from the AD. Hundreds of requests are made per second. The AD ensures696

this does not affect overall system performance, potentially at the cost of its697

responsiveness to the speedometer application’s requests.698

(Note: This assumes that the corresponding denial of service rate limiting which699

is implemented in the SDK API used by the speedometer application has some-700

how failed or been bypassed. In reality, all SDK APIs are also responsible for701

implementing their own rate limiting as a first level of protection against denial702

of service attacks.)703

Malicious CE UI704

An attacker has somehow completely compromised the CE operating system,705

and has root access to it. They can display whatever they like on the graphics706

output from the CE, which is shared with that from the AD on a single screen.707

The attacker tries to replicate the AD UI on the CE’s output and trick the user708

into entering personal data or security credentials in this faked UI, believing709

it to be the actual AD UI. There should be a way for the user to determine710

whether they are inputting details via a trusted path to the AD.711

Plug-and-play CE device712

In a particular vehicle, the CE device can be unplugged from the dashboard by713

the user, and passed around the car so that, for example, a rear seat passenger714

could play a game. This disconnects it from the AD, but it should continue715

to function with some features (such as Wi-Fi or Bluetooth) disabled until716

it is reconnected. Once reconnected to the dashboard it should reestablish717

its connections. See also, Power cycle independence of domains (CE down),718

Power cycle independence of domains (AD down, single screen), Power cycle719

independence of domains (AD down, multiple screens)720

(Note: This is a much lower priority than other setups, but should still be721

considered as part of the overall design, even if the code for it will be implemented722

as a later phase.)723

Connecting an SDK to a development vehicle724

A developer is running the SDK as a standalone CE system in a virtual envi-725

ronment on a laptop. They connect the laptop to the AD physically installed726

in a development car using an Ethernet cable, and expect to receive sensor data727

from the car, using the sensors and actuators SDK API, which was previously728

returning mock results from the standalone system.729

20

Connecting an SDK to a production vehicle730

The developer wonders what would happen if they tried connecting their SDK731

laptop to the AD in a production vehicle. They try this, and nothing happens732

— they cannot get sensor data out of the vehicle, nor use any of its other APIs.733

Security model734

See the Security concept design6 for general terminology including the defini-735

tions used for integrity, availability, confidentiality and trust.736

Attackers737

Vehicle’s owner738

The vehicle’s owner may be an attacker. They have physical access to the vehi-739

cle, including its in-vehicle network, the physical inter-domain communications740

link, and the board or boards which the automotive domain (AD) and consumer-741

electronics domain (CE) are on. We assume they do not have the capabilities742

to perform invasive attacks on silicon on the boards. Specifically, this means743

that in a virtualised setup where the AD and CE are run as separate virtual744

machines on the same CPU, we assume the attacker cannot read or modify the745

inter-domain communications link between them.746

However, we do assume that they can perform semi-invasive or non-invasive747

attacks7 on silicon on the boards. This means that they could (with difficulty)748

extract encryption keys from a secure key store on the board. A secure key749

store may be provided by the Secure Boot design, but may not be present due750

to hardware limitations — if so, the vehicle’s owner will be able to extract751

encryption keys from the device more easily.752

As of February 2016, the Secure Boot design is still forthcoming753

The vehicle’s owner may wish to attack their vehicle in order to get access to754

licenced content which they would otherwise have to pay for.755

See the Conditional Access design8756

We assume they do not want to take control of the vehicle, or to gain arbitrary757

code execution privileges — they can drive the vehicle normally, or develop and758

choose to install their own application bundle for this.759

Passenger760

The passenger is a special kind of third party attacker (Third parties), who761

additionally has access to the in-vehicle network. This may be possible if, for762

6https://martyn.pages.apertis.org/apertis-website/concepts/security/
7http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-630.html
8https://martyn.pages.apertis.org/apertis-website/concepts/conditional_access/

21

https://martyn.pages.apertis.org/apertis-website/concepts/security/
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-630.html
https://martyn.pages.apertis.org/apertis-website/concepts/conditional_access/
https://martyn.pages.apertis.org/apertis-website/concepts/security/
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-630.html
https://martyn.pages.apertis.org/apertis-website/concepts/conditional_access/

example, the Apertis device in the vehicle is removable so it can be passed to a763

passenger, exposing a connector behind it.764

The passenger may be trying to access confidential information belonging to the765

vehicle owner (if a multi-user system is in use).766

Third parties767

Any third party may be an attacker. We assume they have physical access to the768

exterior of the vehicle, but not to anything under the bonnet, including the in-769

vehicle network, the physical inter-domain communications link, and the board770

or boards which the domains are on. This means that all garage mechanics771

must be trusted. They do, however, have access to all communications into and772

out of the vehicle, including Bluetooth, 4G, GPS and Wi-Fi.773

We assume any third party attacker can develop and deploy applications, and774

convince the owner of a vehicle to install them. These applications are subject775

to the normal sandboxing applied to any application installed on an Apertis sys-776

tem. These applications are also subject to the normal Apertis store validation777

procedures, but we assume that a certain proportion of malicious applications778

may get past these procedures temporarily, before being discovered and removed779

from the store.780

We assume that a third party attacker does not have access to the Apertis store781

servers. This means that all staff who have access to them must be trusted.782

A third party attacker may be trying to:783

• Access confidential information belonging to the vehicle owner.784

• Compromise the integrity of the vehicle’s control system (the automotive785

domain). For example, to trigger unintended acceleration or to change786

the radio channel to spook the driver.787

• Compromise the integrity of the CE domain to, for example, make it part788

of a botnet, or cause it to call premium rate numbers owned by the attacker789

to generate money.790

• Compromise the availability of the vehicle’s control system (the automo-791

tive domain) to bring the vehicle to a halt.792

• Compromise the availability of the vehicle’s infotainment system (the CE793

domain) to cause a nuisance to the driver or passengers.794

• Compromise the confidentiality of the device key (see the Conditional795

Access design9) in order to extract licenced content (for example, music)796

from application bundles.797

9https://martyn.pages.apertis.org/apertis-website/concepts/conditional_access/

22

https://martyn.pages.apertis.org/apertis-website/concepts/conditional_access/
https://martyn.pages.apertis.org/apertis-website/concepts/conditional_access/
https://martyn.pages.apertis.org/apertis-website/concepts/conditional_access/
https://martyn.pages.apertis.org/apertis-website/concepts/conditional_access/

Trusted dealer798

As above, all authorized vehicle dealers, garages or other sale/repair locations799

have to be trusted, as they have more unsupervised access to the vehicle’s hard-800

ware, and more capabilities, than the vehicle owner, passenger or a third party.801

Security domains802

• Automotive domain803

– There may be security sub-domains within the automotive domain,804

but for the purposes of this design it is treated as a black box805

• Consumer-electronics domain:806

– Each application sandbox in the consumer-electronics domain807

– CE domain operating system (this includes all the daemons for the808

SDK APIs — these are technically separate security domains, but809

since they communicate only with sandboxes and the CE domain810

proxy, this makes the model more complex for no analytical advan-811

tage)812

– CE domain proxy for the inter-domain communication813

• Connectivity domain:814

– Connectivity domain handles the communication between AD and815

the outer world.816

– Different protocol stacks.817

– CD domain proxy for communicating with AD818

• Other devices on the in-vehicle network, and the outside world819

• Hypervisor (if running as virtualised domains)820

Security model821

• Domains must assume that the inter-domain communication link has no822

confidentiality or integrity, and is controlled by an attacker (a man in the823

middle with the ability to modify traffic)824

– This means they must not trust any traffic from other devices on the825

network826

• The AD, CD and CE operating systems must assume all input from ex-827

ternal sources (Wi-Fi, Bluetooth, GPS, 4G, etc.) is malicious828

• The CE operating system may assume all API calls from the AD (as829

proxied by the CE proxy) are not controlled by an attacker, assuming830

they have come over an authenticated channel which guarantees integrity831

23

between the AD and CE proxy; in other words, the AD must not deny832

confidentiality or integrity to the CE833

• The AD may deny availability to the CE operating system, by closing the834

inter-domain link in response to the user disabling the CE while waiting835

for a critical security update836

• The AD must assume all API calls from the CE are malicious, in case the837

CE has been compromised838

• The CE must assume that all input and output from third party applica-839

tions in sandboxes is malicious, including all their API calls840

• If a hypervisor is present:841

– The AD and CE operating systems may assume all control calls from842

the hypervisor are not controlled by an attacker843

– The hypervisor must assume all input from the CE is malicious844

– The hypervisor may assume that all input from the AD is not mali-845

cious846

∗ Note that, when combined with the fact that the AD cannot be847

updated easily, this makes security bugs in the AD extremely848

critical and extremely hard to fix849

• Tampering with any domain software must be detectable even if it is not850

preventable (tamper evidence)851

• If one vehicle is attacked and compromised, the same effort must be re-852

quired to compromise other vehicles853

Non-use-cases854

Production CE domain used in multiple configurations855

A production CE domain operating system cannot be used in multiple config-856

urations, for example as both an operating system running on one CPU of a857

two-CPU board shared with the automotive domain OS; and then as an im-858

age running on a separate board connected to an in-vehicle network with other859

devices connected.860

This requirement would mean that the inter-domain communications system861

would have to support runtime reconfiguration, which would be a vector for862

protocol-downgrade attacks while bringing no major benefits. An attacker could863

try to trick the CE domain into believing it was in (for example) a virtualised864

configuration when it wasn’t, which could potentially disable its encryption, due865

to the assumption the domain could make about its inter-domain communica-866

tions link having inbuilt confidentiality.867

24

Requirements868

Separated transport layer869

The transport layer for transmitting inter-domain communications between the870

domains must be separated from the APIs being transported, in order to allow871

for different physical links between the domains, with different security proper-872

ties.873

Transport to SDK APIs874

Support a configuration where the CE is running in a virtual machine with the875

Apertis SDK, so the peer (which would normally be the AD) is a mock AD876

daemon running against the SDK.877

See Standalone setup.878

Transport over virtio879

Support a configuration where the CE and AD communicate over a virtio link880

between two virtual machines under a hypervisor.881

See Basic virtualised setup.882

Transport over a private Ethernet link883

Support a configuration where the CE and AD are on separate CPUs and com-884

municate over a point-to-point Ethernet link.885

See Separate CPUs setup, Separate boards setup.886

Transport over a private Ethernet link to a development vehicle887

Support a configuration where the CE is running in an SDK on a laptop, and888

the AD is running in a developer-mode Apertis device in a vehicle, and the two889

communicate over a wider shared Ethernet.890

See Connecting an SDK to a development vehicle.891

Transport over a shared Ethernet link892

Support a configuration where the CE and AD are on separate CPUs are are893

both connected to some wider shared Ethernet.894

See Separate boards setup with other devices, Multiple CE domains setup.895

Transport over Unix Domain Socket896

Support a configuration where AD and CE are on the same host running as897

Linux containers and connected via UDS. The same transport can be used on898

OEM deployments and on SDK environments.899

25

See Linux container setup, Multiple CE domains setup.900

Message integrity and confidentiality in transport layer901

Some of the possible physical links between domains do not guarantee integrity902

or confidentiality of messages, so these must be implemented in the software903

transport layer.904

See Separate CPUs setup, Separate boards setup, Separate boards setup with905

other devices, Multiple CE domains setup, Wi-Fi access.906

Reliability and error checking in transport layer907

Some of the possible physical links between domains do not guarantee reliable908

or error-free transfer of messages, so these must be implemented in the software909

transport layer.910

See Separate boards setup, Separate boards setup with other devices, Multiple911

CE domains setup.912

Mutual authentication between domains913

An attacker may interpose on the inter-domain communications link and at-914

tempt to impersonate the AD to the CE, or the CE to the AD. The domains915

must mutually authenticate before accepting any messages from each other.916

See Tinkering vehicle owner on the network.917

Separate authentication for developer and production mode devices918

A CE running in an SDK must be able to connect to and authenticate with919

an AD running in a vehicle which is in a special ‘developer mode’. If the same920

CE is connected to a production vehicle, it must not be able to connect and921

authenticate.922

See Connecting an SDK to a development vehicle, Connecting an SDK to a923

production vehicle.924

Individually addressed domains925

In order to support multiple CE domains using the same automotive domain,926

each domain (consumer–electronics and automotive) must be individually ad-927

dressable. The system must not assume that there are only two domains in the928

network.929

See Multiple CE domains setup.930

26

Traffic control for latency931

In order to support delivery of touchscreen events with low latency (so that UI932

responsiveness is not perceptibly slow for the user), the system must guarantee933

a low latency for all communications, or provide a traffic control system to934

allow certain messages (for example, touchscreen messages) to have a guaranteed935

latency.936

See Touchscreen events.937

Traffic control for bandwidth938

In order to prevent some kinds of high bandwidth message from using all the939

bandwidth provided by the physical link, the system must provide a traffic940

control system to ensure all types of message have fair access to bandwidth941

(where ‘fairness’ is measured according to some rigorous definition).942

This may be implemented by separating ‘control’ and ‘data’ streams (see sections943

2.4 and 2.5), or by applying traffic control algorithms.944

See Wi-Fi access, Bluetooth access.945

Traffic control for frequency946

In order to prevent denial of service due to a service sending too many messages947

at once (so the communication overheads of those messages start to dominate948

bandwidth usage), the system must guarantee fair access to enqueue messages.949

This is subtly different from fair access to bandwidth: service A sending 100000950

messages of 1KB per second and service B sending 1 message of 100000KB951

per second have the same bandwidth requirements; but if the inter-domain link952

saturates at 100000KB per second, some of the messages from service A must953

be delayed or dropped as the messaging overheads exceed the bandwidth limit.954

See Denial of service through flooding.955

Separation of control and data streams956

Certain APIs will need to provide data and control streams separately, with dif-957

ferent latency and bandwidth requirements for both. The system must support958

multiple streams; this may be via an explicit separation between ‘control’ and959

‘data’ streams, or by applying traffic control algorithms.960

See Wi-Fi access, Bluetooth access, Audio transfer, Video decoding.961

No untrusted access to AD hardware962

The entire point of an inter-domain communication system is to isolate the CE963

from direct access to sensitive hardware, such as vehicle actuators or hardware964

with direct memory access (DMA) rights to the AD CPU’s memory. This must965

apply equally to decoder hardware — decoders or other hardware handling966

27

untrusted data from users must not be trusted by the AD if the CE can send967

untrusted user data to it, unless it is certified as a security boundary, able to968

handle malicious user input without being exploited.969

Specifically, this means that hardware decoders must only access memory which970

is accessible by the AD CPU via an input/output memory management unit971

(IOMMU), which provides memory protection between the two, so that the972

hardware decoder cannot access arbitrary parts of memory and proxy that access973

to a malicious or compromised application in the CE.974

Note that it is not possible to check audio or video content for ‘badness’ before975

sending it to a decoder, as that entails doing the full decoding process anyway.976

See Audio transfer, Video decoding, Video or audio decoder bugs, Connecting977

an SDK to a production vehicle.978

Trusted path for users to update the CE operating system979

There must exist a trusted path from the user to the system updater in the CE,980

or to a component in the AD which will update the CE. The user must always981

have access to this update system (it must always be available).982

This trusted path may also be used by garages to upgrade the CE when servicing983

a vehicle; or a different path may be used.984

See Video or audio decoder bugs, After market CE upgrades, Malicious CE UI.985

Safety limits on AD APIs986

The automotive domain must apply suitable safety limits to all of its APIs,987

which are enforced within the AD, so that even if a properly authenticated and988

trusted CE makes an API call, it is ignored if the call would make the AD do989

something unsafe.990

In this case, ‘safety’ is defined differently for each actuator or combination of991

actuator settings, and will vary between AD implementations. It might not be992

possible to detect all unsafe situations (in the sense of an unsafe situation which993

could lead to an accident).994

See Tinkering vehicle owner on the boards, Malicious CE.995

Rate limiting on control messages996

The inter-domain service in the CE and AD should impose rate limiting on997

control messages coming from the CE, to avoid a compromised service in the CE998

from using a denial of service attack to prevent other messages being transmitted999

successfully.1000

This should be in addition to rate limiting implemented in the SDK APIs in the1001

CE themselves, which are expected to be the first line of defence against denial1002

of service attacks.1003

28

See Denial of service through flooding.1004

Ignore unrecognised messages1005

Both the CE and AD must ignore (and log warnings about) inter-domain com-1006

munication messages which they do not recognise. If the message expects a1007

reply, an error reply must be sent. The domains must not, for example, shut1008

down or crash when receiving an unrecognised message, as that would lead to1009

a denial of service vulnerability.1010

See Tinkering vehicle owner on the boards, Malicious CE.1011

Portable transport layer1012

The transport layer must be portable to a variety of operating systems and1013

architectures, in order that it may be used on different AD operating systems.1014

This means, for example, that it must not depend on features added to very1015

recent versions of the Linux kernel, or must have fallback implementations for1016

them.1017

See Support multiple AD operating systems.1018

Support push mode and pull mode communications1019

The CE must be able to use pull mode communications with the AD, where1020

it makes a method call and receives a reply; and push mode communications,1021

where the AD emits a signal for an event, and the CE receives this.1022

See Support multiple AD operating systems.1023

OEM AD integration API1024

In order to allow any OEM to connect their AD to the system, there must1025

be a well defined API which they connect their OEM-specific APIs for vehicle1026

functionality to, in order for that functionality to be exposed over the inter-1027

domain communication link.1028

This API must support an implementation which uses the services in the Apertis1029

SDK.1030

See Support multiple AD operating systems, Standalone setup.1031

Flexibility in OEM AD integration API1032

As the functionality exported by different ADs differs, the integration API for1033

connecting it to the inter-domain communication system must be a general one1034

— it must not require certain functionality or data types, and must support1035

functionality which was not initially expected, or which is not currently sup-1036

ported by any CE. This functionality should be exposed on the inter-domain1037

communications link, in case future versions of the CE can take advantage of it.1038

29

See Support multiple AD operating systems, Before market CE upgrades, After1039

market CE upgrades, New version of AD software, New version of AD interfaces.1040

Inflexibility in OEM AD integration API1041

The OEM AD integration API must not allow access to arbitrary services or1042

APIs on the AD. It must only allow access to the services and APIs explicitly1043

exposed by the OEM in their use of the integration API.1044

See Unsupported AD interfaces.1045

Service discovery1046

Domains should be able to detect where specific services are hosted in case of1047

multiple CE domains. If a service is moved from one CE domain to another1048

CE domain, other domains should not require any reconfiguration. CE domains1049

should not be able to spoof services that are meant to be provided by the AD.1050

Stability in inter-domain communications protocol1051

As the versions of the AD and CE change at different rates, the inter-domain1052

communications protocol must be well defined and stable — it must not change1053

incompatibly between one version of the CE and the next, for example.1054

If the protocol uses versioning to add new features, both domains must support1055

protocol version negotiation to find a version which is supported if the latest1056

one is not.1057

See Before market CE upgrades, After market CE upgrades, New version of AD1058

software, Unsupported AD interfaces, Protocol compatibility.1059

Testability of protocols1060

All IPC links in the inter-domain communications system must be testable in-1061

dividually, without requiring the other parts of the system to be running. For1062

example, the link between applications and SDK API services must be testable1063

without running an automotive domain; the link between SDK API services and1064

the inter-domain interface at the boundary of the CE domain must be testable1065

without running an automotive domain; etc.1066

See Testability, New version of AD software, Unsupported AD interfaces.1067

Testability of protocol parsers and writers1068

All protocol parsers and writers in the inter-domain communications system1069

must be testable individually, using unit tests and test vectors which cover all1070

facets of the protocol. These tests must include negative tests — checks that1071

invalid input is correctly rejected. For example, if a protocol requires a certificate1072

30

to authenticate a peer, a test must be included which attempts a connection1073

with different types of invalid certificate.1074

See Testability, New version of AD software, Unsupported AD interfaces.1075

Testability of processes1076

The code implementing all processes in the inter-domain communications system1077

must be testable individually, without having to run each process as a subprocess1078

in a test harness (because this makes testing slower and error prone). This means1079

implementing each process as a library, with a well defined and documented API,1080

and then using that library in a trivial wrapper program which hooks it up to1081

input and output streams and accepts command line arguments.1082

See Testability, New version of AD software, Unsupported AD interfaces.1083

CE system services separated from transport layer1084

There must be a trust boundary between each service on the CE which has access1085

to the inter-domain communication link, and the service which provides access1086

to the inter-domain communications link itself. The inter-domain service should1087

validate that messages from a service are related to that service (for example,1088

by having a whitelist of types of message which each service can send).1089

This limits the potential for escalation if service A is exploited — then the1090

attacker can only use the inter-domain service to impersonate A, rather than1091

to impersonate all services in the CE. It also allows the resource usage of the1092

inter-domain service to be limited, to limit the impact of a denial of service1093

attack on it.1094

See Malicious CE, Marshalling resource usage.1095

No dependency on CE specific hardware1096

As the CE hardware may be upgraded by a garage at some point, the inter-1097

domain communications should not depend on specific identifiers in this hard-1098

ware, such as an embedded cryptographic key. Such keys may be used, but the1099

AD should accept multiple keys (for example, all keys signed by some overall1100

key provided by Apertis to all OEMs), rather than only accepting the specific1101

key from the hardware it was originally run against.1102

This requirement may also be satisfied by including provisions for updating the1103

copy of a key in the AD if such a dependency on a specific CE key is a sensible1104

implementation choice.1105

See After market upgrade of a domain.1106

31

Immediate error response if service on peer is unavailable1107

If a service on the peer has crashed or is unresponsive, but the peer itself (includ-1108

ing its inter-domain communications link) is still responsive, that peer should1109

return an error to the other domain, which should propagate it to any caller of1110

SDK APIs which use the failing service. An error response must be returned,1111

otherwise the caller will time out.1112

See Power cycle independence of domains (CE down), Power cycle independence1113

of domains (AD down, single screen), Power cycle independence of domains (AD1114

down, multiple screens), Plug-and-play CE device1115

Immediate error response if peer is unavailable1116

If the peer has crashed, or is not currently connected to the physical inter-1117

domain communications link (either because it has been unplugged or due to a1118

fault), the other peer must generate a local error response in the inter-domain1119

service and return that to any caller of SDK APIs which require inter-domain1120

communications. An error response must be returned, otherwise the caller will1121

time out.1122

See Power cycle independence of domains (CE down), Power cycle independence1123

of domains (AD down, single screen), Power cycle independence of domains (AD1124

down, multiple screens), Plug-and-play CE device1125

Timeout error response if peer does not respond1126

If the peer is unresponsive to a particular inter-domain message, the other peer1127

must generate a local error response in the inter-domain service and return that1128

to the caller of the SDK API which required inter-domain communications. An1129

error response must be returned, otherwise the caller will wait for a response1130

indefinitely (or have to implement its own timeout logic, which would be redun-1131

dant).1132

See Power cycle independence of domains (CE down), Power cycle independence1133

of domains (AD down, single screen), Power cycle independence of domains (AD1134

down, multiple screens), Plug-and-play CE device1135

All inter-domain communications APIs are asynchronous1136

As inter-domain communications may have some latency, or may time out after1137

a number of seconds, all SDK APIs which require inter-domain communications1138

must be asynchronous, in the GLib sense10: the call must be started, a handler1139

for its response added to the caller’s main loop, and the caller must continue1140

with other tasks until the response arrives from the other domain.1141

10https://developer.gnome.org/gio/stable/GAsyncResult.html

32

https://developer.gnome.org/gio/stable/GAsyncResult.html
https://developer.gnome.org/gio/stable/GAsyncResult.html

This encourages UIs to be written to not block on SDK API calls which might1142

take multiple seconds to complete, as during that time, the UI would not be1143

redrawn at all, and hence would appear to ‘freeze’.1144

See Temporary communications problem.1145

Reconnect to peer as soon as it is available1146

If a domain has crashed and restarted, or was disconnected from the inter-1147

domain communications link and then reconnected, the domain must reconnect1148

to its peer as soon as the peer can be found on the network. If, for example,1149

both domains had crashed, this may involve waiting for the peer to connect to1150

the network itself.1151

See Plug-and-play CE device.1152

External domain watchdog1153

Both domains must be connected to an external watchdog device which will1154

restart them if they crash and fail to restart themselves.1155

The watchdog must be external, rather than being the other domain, in case1156

both domains crash at the same time.1157

See Power cycle independence of domains (CE down), Power cycle independence1158

of domains (AD down, single screen), Power cycle independence of domains (AD1159

down, multiple screens).1160

Reporting system for malicious applications1161

There should exist a trusted path from the application launcher in the CE to1162

the Apertis store to allow the launcher to provide feedback about applications1163

which are detected to have done ‘malicious’ things, such as called an SDK API1164

with parameters which are obviously out of range.1165

If such a path exists, the inter-domain service in the CE must be able to detect1166

error responses from the AD which indicate that malicious behaviour has been1167

detected and rejected, and must be able to forward those notifications to the1168

reporting system.1169

See Feedback for malicious applications.1170

Ability to disable the consumer–electronics domain1171

There must exist a trusted path to a setting in the AD to allow the vehicle1172

owner to disable the CE because it has been compromised, pending taking the1173

vehicle to a trusted dealer to install an update.1174

As well as preventing booting the CE, this must disable all inter-domain com-1175

munications from within the inter-domain service in the AD.1176

33

See Compromised CE with delayed fix.1177

Tamper evidence1178

If the CE or AD, or communications between them are tampered with by an1179

attacker, it must be possible for an investigator (who is trusted by and has access1180

to tools provided by the OEM) to determine that the software or hardware was1181

modified — although it might not be possible for them to determine how it was1182

modified. This will allow for liability to be attributed in the event of an accident1183

or warranty claim.1184

See Tinkering vehicle owner on the network, Tinkering vehicle owner on the1185

boards.1186

No global keys in vehicles1187

The security which protects the inter-domain communication system (including1188

any trusted boot security) must use unique keys for each vehicle, and must not1189

have a global key (one which is the same in all vehicles) as a single point of1190

failure.1191

This means that if an attacker manages to compromise one vehicle, they must1192

not be able to learn anything (any keys) which would allow them to compromise1193

another vehicle with less effort.1194

See Tinkering vehicle owner on the network, Tinkering vehicle owner on the1195

boards.1196

Existing inter-domain communication systems1197

As this is quite a unique problem, we know of no directly comparable systems.1198

More generally, this is an instance of a distributed system, and hence similar1199

in some respects to a number of existing remote procedure call systems or dis-1200

tributed middleware systems.1201

If comparisons with specific systems would be beneficial, they can be included1202

in a future revision of this document.1203

Open question: Are there any relevant existing systems to compare against?1204

Approach1205

Based on the [above research][Existing domain communications system] and1206

Requirements, we recommend the following approach as an initial sketch of an1207

inter-domain communication system.1208

34

Overall architecture1209

In the following figure, each box represents a process, and hence each connection1210

between them is a trust boundary.1211

1212

Apertis IDC architecture. The ‘OEM specific’ APIs are also known1213

as ‘native OEM APIs’; and the ‘OEM API’ is also known as the1214

‘Apertis automotive API’. For more information on the export and1215

adapter layer, see Automotive domain export layer and Consumer-1216

electronics domain adapter layer.1217

APIs from the automotive domain are exported by an export layer (Automo-1218

tive domain export layer) as D-Bus objects on the inter-domain communications1219

link. This link runs a known version of the D-Bus protocol (and requires back-1220

wards compatibility indefinitely) between an inter-domain service process in1221

each domain (Protocol library and inter-domain services). The inter-domain1222

service in the CE domain sends and receives D-Bus messages for the objects1223

exported by the automotive domain, and proxies them to a private bus in the1224

35

CE domain. SDK services in the CE domain connect to this bus, and an adapter1225

layer Consumer-electronics domain adapter layer in each service converts the1226

APIs from the automotive domain to the SDK APIs used in the version of Aper-1227

tis in use in the CE domain. These SDK APIs are exported onto the normal1228

D-Bus session bus, to be used by applications (Flow for a given SDK API call).1229

The export layer and adapter layer provide abstraction of the APIs from the1230

automotive domain: the export layer converts them from C APIs, QNX message1231

passing, or however they are implemented in the automotive OS, to a D-Bus API1232

which is specific to that OEM, but which has stability guarantees through use1233

of API versioning (Interaction of the export and adapter layers). The adapter1234

layer converts from this D-Bus API to the current version of the Apertis SDK1235

APIs. Both layers are OEM-specific.1236

The use of the D-Bus protocol throughout the system means that between the1237

export layer and the adapter layer, message contents to not need to be re-1238

marshalled — messages only need their headers to be changed before they are1239

forwarded. This should eliminate a common cause of poor performance (remar-1240

shalling).1241

High-bandwidth Data connections are provided in parallel with the control con-1242

nection which runs this D-Bus protocol (Control protocol). They use TCP,1243

UDP or Unix sockets, and are opened between the two inter-domain services on1244

request. Applications and services must define their own protocols for commu-1245

nicating over these links, which are appropriate to the data being transferred1246

(for example, audio data or a Bluetooth file transfer).1247

Authentication, confidentiality and integrity of all inter-domain communications1248

(the control connection and data connections) are provided by using IPsec as1249

the bottom layer of the protocol stack (Encryption). The same protocol stack1250

is used for all configurations of the two domains (from a standalone CE domain1251

through to multiple CE domains on a shared network with an automotive do-1252

main), to ensure that the same code path is used for all configurations and hence1253

is widely tested (Configuration designs).1254

Addressing and discovery of domains, before the initial connection between1255

them, is provided by IPv6 neighbour discovery (Traffic control).1256

Traffic control is implemented in the CE domain using standard Linux kernel1257

traffic control mechanisms, with the policy specified by the inter-domain ser-1258

vice (section 8.4). It is applied for the control connection and for each data1259

connection separately, as they are all separate TCP or UDP connections.1260

The only exception from the above is Linux container setup which uses Unix1261

Domain Sockets as a trusted and reliable bottom transport layer instead of1262

IPsec. In this case, there is no need for traffic control. Addressing and discovery1263

of local domains in Linux container setup is based on common directories created1264

and shared outside of the containers by the container manager.1265

36

1266

Responsibilities for areas of code in the IDC architecture1267

Security domains1268

As process boundaries are the only way of enforcing trust boundaries, each1269

of these security domains corresponds to at least one separate process in the1270

system.1271

• Inter-domain service in the automotive domain. We recommend that this1272

remains a separate security domain from the rest of the services and soft-1273

ware running in the AD. This allows it to be isolated from other compo-1274

nents to reduce the attack surface exposed by the AD.1275

• Rest of the automotive domain: as mentioned in Security domains, the1276

automotive domain is essentially a black box.1277

• Each application sandbox in the consumer–electronics domain.1278

• Inter-domain service in the consumer–electronics domain.1279

37

• Each service for an SDK API in the consumer–electronics domain. The1280

trust boundaries between them may not be enforced strongly (as all ser-1281

vices in the consumer–electronics domain are considered as trusted parts1282

of the operating system), but their trust boundaries with the inter-domain1283

service should be enforced, and the inter-domain service should consider1284

them as potentially compromised.1285

• Other devices on the in-vehicle network, and the outside world.1286

• Hypervisor (if running as virtualised domains).1287

Protocol design1288

The protocol for communicating data between the domains has two planes: the1289

control plane, and the data plane. They have different requirements, but both re-1290

quire addressing, routing, mutual authentication of peers, confidentiality of data1291

and integrity of data. In addition, the control plane must have bi-directional,1292

in-order transmission, framing, reliability and error detection. Conversely, the1293

data plane must have multiplexing, and the ability to apply traffic control to1294

each of its connections (Traffic control).1295

The control plane is used for sending control data between the domains — these1296

are the method calls which form the majority of inter-domain communications.1297

They require low latency, and are low bandwidth. The [control protocol][Control1298

protocol] itself provides push and pull method call semantics, and allows for new1299

data connections (Data connections) to be opened. Only one control connection1300

exists between a pair of domains, and it is always connected.1301

The data plane is used for high bandwidth data, such as video or audio streams,1302

or Wi-Fi, 4G or Bluetooth downloads. The latency requirements are variable,1303

but all connections are high bandwidth. The inter-domain communication sys-1304

tem provides a plain stream for each data plane connection, and services must1305

implement their own protocol on top which is appropriate for the specific type1306

of data being transmitted (for example, audio or video streaming; or Wi-Fi1307

downloads). Data connections are created between two domains on demand,1308

and are closed after use.1309

IPsec versus TLS1310

An important design decision is whether to use IPsec11 or TLS12 (and DTLS)1311

for providing the security properties of the inter-domain connection.1312

If IPsec is used (following figure), it forms the bottom layer of the protocol hierar-1313

chy, and implements addressing, routing, mutual authentication, confidentiality1314

and integrity for all connections in the control and data planes.1315

11https://en.wikipedia.org/wiki/IPsec
12https://en.wikipedia.org/wiki/Transport_Layer_Security

38

https://en.wikipedia.org/wiki/IPsec
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://en.wikipedia.org/wiki/IPsec
https://en.wikipedia.org/wiki/Transport_Layer_Security

1316

Protocol stacks for control and data planes if using IPsec.1317

If TLS is used (Following figure), it forms the layer just below the application1318

protocols in the protocol hierarchy — the control plane would use a single1319

TLS over TCP connection; and the data plane would use multiple TLS over1320

TCP or DTLS over UDP connections. TLS (and hence DTLS — they have the1321

same security properties) implements mutual authentication, confidentiality and1322

integrity, but only for a single connection; each new connection needs a new TLS1323

session.1324

The chief advantage of IPsec is its transparency: any protocol can be tunnelled1325

using it, without needing to know about the security properties it has. However,1326

to do this, IPsec needs to be supported by both the AD and CE kernels. Some1327

automotive operating systems may not support IPsec (although, as a data point,1328

QNX seems to).1329

1330

Protocol stacks for control and data planes if using TLS.1331

A 2003 review of the IPsec protocol13 identified a number of problems with it.1332

However, since then, it has been updated by RFC 430114, RFC 604015 and RFC1333

761916. These should be evaluated and the overall protocol security determined.1334

In contrast, the security of TLS has been well studied, especially in recent years1335

after the emergence of various vulnerabilities in it. TLS has the advantage that1336

it is a smaller set of protocols than IPsec, and hence easier to study.1337

13https://www.schneier.com/cryptography/archives/2003/12/a_cryptographic_eval.html
14https://tools.ietf.org/html/rfc4301
15https://tools.ietf.org/html/rfc6040
16https://tools.ietf.org/html/rfc7619

39

https://www.schneier.com/cryptography/archives/2003/12/a_cryptographic_eval.html
https://tools.ietf.org/html/rfc4301
https://tools.ietf.org/html/rfc6040
https://tools.ietf.org/html/rfc7619
https://tools.ietf.org/html/rfc7619
https://tools.ietf.org/html/rfc7619
https://www.schneier.com/cryptography/archives/2003/12/a_cryptographic_eval.html
https://tools.ietf.org/html/rfc4301
https://tools.ietf.org/html/rfc6040
https://tools.ietf.org/html/rfc7619

Open question: What is the security of the IPsec protocol in its current (2015)1338

state?1339

Performance-wise, TLS requires a handshake for each new connection, which1340

imposes connection latency of at least one round trip (assuming use of TLS ses-1341

sion resumption17) for each new connection (on top of other latency such as the1342

TCP handshake). It is not possible to use a single TLS session and multiplex1343

connections within it, as this puts the protocol reliability (TCP retransmission)1344

below the multiplexing in the protocol stack, which makes the multiplexed con-1345

nection prone to head of line blocking18, which seriously impacts performance,1346

and allows one connection to perform a denial of service attack on all others it1347

is multiplexed with. IPsec has the advantage of not requiring this handshake1348

for each connection, which significantly reduces the latency of creating new con-1349

nections, but does not affect their overall bandwidth once they have reached a1350

steady state.1351

Open question: What is the performance of TCP and UDP over IPsec, TLS1352

over TCP and DTLS over UDP on the Apertis reference hardware?1353

Overall, we recommend using IPsec if it is expected to be supported by all1354

automotive domain operating systems which will be used with Apertis systems.1355

Otherwise, if an AD OS might not support IPsec, we recommend using TLS1356

over TCP and DTLS over UDP for all configurations. We do not recommend1357

providing a choice for OEMs between IPsec and TLS, as this doubles the possible1358

configurations (and hence testing) of a part of the system which is both complex1359

and security critical.1360

The remainder of this document assumes that IPsec is chosen. Throughout,1361

please read ‘IPsec’ as meaning ‘the IPsec protocol stack or the TLS protocol1362

stack’.1363

Configuration designs1364

The physical links available between the domains differ between configurations of1365

the domains, as do their properties. For some configurations (Standalone setup,1366

Basic virtualised setup, Linux container setup) confidentiality and integrity of1367

the inter-domain communications protocol are not strictly necessary, as the1368

physical link itself cannot be observed by an attacker. However, for the other1369

configurations, these two properties are important.1370

Since the first two configurations are the ones which are typically used for devel-1371

opment, we suggest implementing confidentiality and integrity for them anyway,1372

regardless of the fact it’s not strictly necessary. This avoids the situation where1373

the code running on production configurations is vastly different from that run-1374

ning on development configurations. Such a situation often leads to inadequate1375

testing of the production code.1376

17https://tools.ietf.org/html/rfc5077
18https://en.wikipedia.org/wiki/Head-of-line_blocking

40

https://tools.ietf.org/html/rfc5077
https://tools.ietf.org/html/rfc5077
https://tools.ietf.org/html/rfc5077
https://en.wikipedia.org/wiki/Head-of-line_blocking
https://tools.ietf.org/html/rfc5077
https://en.wikipedia.org/wiki/Head-of-line_blocking

This should be weighed against the potential performance gains from eliminating1377

encryption from those connections, and the potential gains in debuggability1378

(for the Standalone setup and Linux container setup) by being able to inspect1379

network traffic without needing to extract the encryption key.1380

Open question: What trade-off do we want between performance and testa-1381

bility for the different transport layer configurations?1382

Standalone setup1383

IPsec running on a loopback interface19 to a service running in the SDK which1384

mocks up the inter-domain service running in the AD. The security properties it1385

provides are technically not needed, as the standalone setup is for development1386

and is ignored by the security model.1387

Even though there are only two peers communicating, they will both have and1388

use a full addressing scheme (Addressing and peer discovery).1389

Basic virtualised setup1390

A virtio-net connection must be set up in the CE and AD virtual guests, using1391

a private network containing those two peers. If the AD cannot be modified to1392

enable a virtio-net connection, a normal virtualised Ethernet connection must1393

be used.1394

Virtio-net is the name of the KVM paravirtualised network driver1395

(http://www.linux-kvm.org/page/Virtio). Similar paravirtualised1396

drivers exist for most hypervisors; so an appropriate one for the1397

hypervisor should be used. For simplicity, this document will use1398

‘virtio-net’ to refer to them all.1399

In either case, the transport layer will use IPsec between the two. The security1400

properties it provides are technically not needed for a virtualised configuration,1401

as the security model guarantees that the hypervisor maintains confidentiality1402

and integrity of the connection.1403

Even though there are only two peers on the network, they will both have and1404

use a full addressing scheme (Addressing and peer discovery).1405

Separate CPUs setup1406

A normal Ethernet connection must be used to connect the AD and CE on a1407

private network. IPsec will be used over this Ethernet link, providing all the1408

necessary transport layer properties.1409

Even though there are only two peers on the network, they will both have and1410

use a full addressing scheme, described below.1411

Separate boards setup1412

Same as for the separate CPUs setup.1413

19https://en.wikipedia.org/wiki/Loopback#Virtual_loopback_interface

41

https://en.wikipedia.org/wiki/Loopback#Virtual_loopback_interface
http://www.linux-kvm.org/page/Virtio
https://en.wikipedia.org/wiki/Loopback#Virtual_loopback_interface

Separate boards setup with other devices1414

Same as for the separate CPUs setup.1415

Multiple CE domains setup1416

Same as for the separate CPUs setup. Each domain’s address must be unique,1417

and the use of addressing in this configuration becomes important.1418

Linux container setup1419

The communication is based on Unix Domain Sockets (UDS) shared between1420

the counterpart domains; this means that a common directory must be shared1421

for each pair of communicating domains. This directory must be writable by at1422

least one container, such that its gateway layer or adapter layer can create the1423

named unix domain socket file and listen on it, and must be readable on the1424

other container, which will connect to the shared named unix domain socket1425

file. The dedicated shared directory for communication may support space1426

limits for writing and inodes creation, for example: dedicated tmpfs mount or1427

btrfs subvolume quota, to prevent denials of service due to filesystem space1428

exhaustion.1429

The container manager is responsible for the actions below when each container1430

is started or stopped:1431

• a shared storage space (a size-constrained tmpfs mount or btrfs subvol-1432

ume) must be defined for each pair of containers on the host system, for1433

instance ${IDC_HOST_DIR}/automotive-connectivity for the link connecting1434

the automotive and connectivity domains1435

• the shared storage must be mounted by the container manager with1436

read/write permissions on the first domain of the pair, for instance as1437

${IDC_DIR}/connectivity in the automotive domain1438

• the same shared storage must be mounted by the container manager1439

with read permissions on the second domain of the pair, for instance as1440

${IDC_DIR}/automotive in the connectivity domain1441

• when the container is stopped, the shared storage and mounts associated1442

with the container must be unmounted1443

The variables ${IDC_HOST_DIR} and ${IDC_DIR} mentioned above represent the1444

paths where the shared spaces are mapped on the host and containers filesys-1445

tems respectively. By default, both variables ${IDC_HOST_DIR} and ${IDC_DIR}1446

are defined in a common manner as /var/lib/idc/. OEM or developer’s setup1447

may require to redefine these paths for the customised environment.1448

Addressing and peer discovery1449

Network addressing and peer discovery1450

42

Each domain will be identified by its IPv6 address, and domains will be dis-1451

covered using the IPv6 protocol’s secure neighbour discovery20 protocol. As1452

domains do not need to be human-addressable (indeed, the users of the vehicle1453

need never know that it has multiple domains running in it), there is no need1454

to use DNS or mDNS for addressing.1455

The neighbour discovery protocol includes a feature called neighbour unreach-1456

ability detection, which should be used as one method of determining that one1457

of the domains has crashed. When a domain crashes, the other domain should1458

poll for its existence on the network at a constant frequency (for example, at1459

2Hz) until it reappears at the same address as before. This frequency of polling1460

is a trade-off between not flooding the network with connectivity checks, but1461

also detecting reappearance of the domain rapidly.1462

When reconnecting to a restarted domain, the normal authentication process1463

should be followed, as if both domains were starting up normally. There is no1464

state to restore for the inter-domain link itself but, for example, SDK services1465

may wish to re-query the automotive domain for the current vehicle state after1466

reconnecting. They should do this after receiving an error response from the1467

AD for an inter-domain communication which indicated that the other domain1468

had crashed. Such behaviour is up to the implementers of each SDK service,1469

and is not specified in this design.1470

Container-based addressing and peer discovery1471

Each container must be assigned an unique name on the filesystem to be used1472

as domain identifier for addressing and peer discovery purposes.1473

The ${IDC_DIR} directory in the container contains a directory entry for each1474

associated domain to be connected through the inter-domain communication1475

mechanism. As described in Linux container setup, the container manager is1476

responsible for mounting a dedicated shared space to host the socket for the1477

container pairs.1478

The name of mount point for the shared directory in the container should be the1479

same as the name of counterpart peer. For example, to connect an automotive1480

and a connectivity domain, the shared space must be mounted in the automotive1481

container on the ${IDC_DIR}/connectivity/ path and must be mounted in the1482

connectivity container on the ${IDC_DIR}/automotive/ path.1483

On startup, each container in the pair must try to unlink() any stale file in1484

the shared spaces and then create a Unix Domain Socket named socket there.1485

Since the shared directory is mounted with write permissions only on a single1486

domain, the unlink() and bind() calls on the unix socket file will fail on the1487

other domain, which only has read permissions.1488

Once it has removed any stale file and successfully created the socket, the first1489

container in the pair must then listen() on it: for instance the automotive1490

20https://en.wikipedia.org/wiki/Secure_Neighbor_Discovery

43

https://en.wikipedia.org/wiki/Secure_Neighbor_Discovery
https://en.wikipedia.org/wiki/Secure_Neighbor_Discovery

domain must listen on the ${IDC_DIR}/connectivity/socket unix socket. The1491

second container in the pair must instead wait for the socket file to be available1492

and must connect to it as soon it is created: for instance the connectivity must1493

wait for the ${IDC_DIR}/automotive/socket file to appear and connect to it.1494

Encryption1495

The confidentiality, integrity and authentication of the inter-domain commu-1496

nications link is provided by IPsec in transport mode for networked setups,1497

and by kernel-provided Unix Domain Sockets on [container-based setups][Linux1498

container setup].1499

Open question: What more detailed configuration options can we specify for1500

setting up IPsec? For example, disabling various optional features which are1501

not needed, to reduce the attack surface. What IKE service should be used?1502

The system should use an IPsec security policy which drops traffic between1503

the CE and AD unless IPsec is in use. The security policy should not specify1504

behaviour for communications with other peers.1505

Each domain must have an X.509 certificate (essentially, a public and private1506

key pair), which are used for automatic keying for the IPsec connections. The1507

certificates installed in the automotive domain must be signed by a certificate1508

authority (CA) specific to the automotive domain and possibly the OEM. The1509

certificates installed in the CE domain must be signed by a CA specific to the1510

CE domain and possibly the OEM.1511

A domain (automotive or CE) which is in developer mode must use a certificate1512

which is signed by a developer mode CA, not the production mode CA. This1513

allows a production mode domain to prevent connections from a developer mode1514

domain.1515

See Appendix: Software versus hardware encryption for a comparison of soft-1516

ware and hardware encryption.1517

In order to maintain confidentiality of the connection, the keys for the IPsec1518

connection must be kept confidential, which means they must be stored in mem-1519

ory which is not accessible to an attacker who has physical access to the system1520

(see Tamper evidence and hardware encryption); or they must be encrypted1521

under a key which is stored confidentially (a key-encrypting key, KEK). Such1522

a confidential key store should be provided by the Secure Boot design — if1523

available, confidentiality of the inter-domain communications can be guaran-1524

teed. If not available, inter-domain communications will not be confidential if1525

an attacker can extract the boot keys for the system and use them to extract1526

the inter-domain communications keys.1527

As of February 2016, the Secure Boot design is still forthcoming1528

See section 8.15 for further discussion of the hardware base for confidentiality1529

and integrity of the system.1530

44

Open question: A lot of business logic for control over OEM licencing can1531

be implemented by the choice of the CA hierarchy used by the inter-domain1532

communication system. What business logic should be possible to implement?1533

Open question: Consider key control, revocation, protocol obsolescence, and1534

various extensions for pinning keys and protocols.1535

Open question: What can be done in the automotive domain to reduce the1536

possibility of exploits like Heartbleed21 affecting the inter-domain communica-1537

tions link? This is a trade-off between the stability of AD updates (high; rarely1538

released) and the pace of IPsec and TLS security research and updates and the1539

need for crypto-agility (fast). Heartbleed was a bug in a bad implementation of1540

an optional and not-very-useful TLS extension.1541

Control protocol1542

The control protocol provides push and pull method call semantics and a type1543

system for marshalling method call parameters and return values — but it does1544

not prescribe a specific set of APIs which it will transport. It must be flexible1545

in the set of APIs which it transports.1546

We suggest using D-Bus over TCP as the control protocol, using a private bus1547

between the automotive domain and the consumer–electronics domain. For1548

multiple CE domain configurations, each automotive—consumer–electronics do-1549

main pair would have its own private bus.1550

The transport should be implemented using D-Bus’ TCP socket transport221551

mechanism. Authentication, confidentiality and integrity are provided by the1552

underlying IPsec connection. D-Bus implements its own datagram framing on1553

top of the TCP stream.1554

On this bus, APIs from the automotive domain would be exposed as services;1555

the CE domain can then call methods on those services, or receive signals from1556

them.1557

D-Bus was chosen as it implements the necessary functionality, reuses a lot of1558

the technologies already in use in Apertis, is stable, and is familiar to Apertis1559

developers. Note that we suggest D-Bus the protocol, not necessarily dbus-1560

daemon the message bus daemon or libdbus the reference protocol library. D-Bus1561

the protocol provides:1562

• Method calls (pull semantics) with exactly one reply, supporting timeouts1563

• Error responses1564

• Signals (push semantics)1565

• Properties1566

21https://en.wikipedia.org/wiki/Heartbleed
22http://dbus.freedesktop.org/doc/dbus-specification.html#transports-tcp-sockets

45

https://en.wikipedia.org/wiki/Heartbleed
http://dbus.freedesktop.org/doc/dbus-specification.html#transports-tcp-sockets
https://en.wikipedia.org/wiki/Heartbleed
http://dbus.freedesktop.org/doc/dbus-specification.html#transports-tcp-sockets

• Strong type system1567

• Introspection1568

There are several important points here: introspection means that the D-Bus1569

services on the AD can send their API definitions to the CE at runtime if needed,1570

so that the CE does not have to have access to header files (or similar) from the1571

AD. It also means the API definition can change without needing to recompile1572

things — for example, an update to the AD could expose new APIs to the CE1573

without needing to update header files on the CE. Finally, method calls support1574

‘in’ and ‘out’ parameters (multiple return values) which allows for bi-directional1575

communication in the control protocol.1576

Open question: How should the multiple CE configuration (Configuration de-1577

signs interact with D-Bus signals? Can the adapter layer perform the broadcast1578

to all subscribers?1579

The D-Bus protocol is stable, and has maintained backwards compatibility with1580

all previous versions since 200623. If changes to the D-Bus protocol are intro-1581

duced in future, they will be introduced as extensions which are used optionally,1582

if supported by both peers on the bus. Hence backwards compatibility is main-1583

tained.1584

Data connections1585

If a service wishes to send high-bandwidth data between the domains, it must1586

open a new data connection. Data connections are created on demand, and1587

are subject to traffic control, so the AD may, for example, reject a connection1588

request or throttle its bandwidth in order to maintain quality of service for1589

existing connections.1590

The inter-domain communication protocol provides two types of data connec-1591

tion: TCP-like and UDP-like. These are implemented as TCP or UDP connec-1592

tions between the two domains, running over IPsec. IPsec provides the necessary1593

authentication, confidentiality and integrity of the data; TCP or UDP provide1594

the multiplexing between connections (see the IPsec protocol stacks figure in1595

IPSec versus TLS). For Linux container setup a Unix domain socket is used as1596

the IDC link; the local kernel provides the needed authentication, confidential-1597

ity and integrity of the data. Services must implement their own application-1598

specific protocols on top of the TCP or UDP connection they are provided. For1599

example, a video service may use a lossy synchronised audio/video protocol over1600

UDP for sending video data together with synchronised audio; while a down-1601

load service may use HTTP over TCP for sending downloads between domains.1602

(See [here][Appendix: Audio and video decoding] for a discussion of options for1603

implementing video and audio decoding.) Such protocols are not defined as part1604

of this design — they are the responsibility of the services themselves to design1605

and implement.1606

23http://dbus.freedesktop.org/doc/dbus-specification.html#stability

46

http://dbus.freedesktop.org/doc/dbus-specification.html#stability
http://dbus.freedesktop.org/doc/dbus-specification.html#stability

Data connections are opened by sending a request to one of the inter-domain1607

services (Protocol library and inter-domain services), specifying desired charac-1608

teristics for the connection, such as whether it should be TCP-like or UDP-like,1609

its bandwidth and latency requirements, etc. The connection will be opened1610

and a unique identifier and file descriptor for it returned to the requesting ser-1611

vice. This service must then send the identifier over the control connection so1612

that the corresponding service in the other domain can request a file descriptor1613

for the other end of the connection from its inter-domain service.1614

Open question: Could this be simplified by using D-Bus’ support for file de-1615

scriptor passing? D-Bus’ TCP transport currently explicitly does not support1616

file descriptor passing, so implementing it that way without introducing incom-1617

patibilities requires planning.1618

It is tempting to extend D-Bus’ support for file descriptor (FD) passing so that1619

it operates over TCP to provide these data connections. However, that would1620

effectively be a fork of the D-Bus protocol, which we do not want to maintain as1621

part of this system. Secondly, due to the way FD passing works, with the peer1622

passing an FD to the dbus-daemon and asking for it to be forwarded — this1623

would mean that the peer (i.e. an SDK or OEM service) has the responsibility1624

for opening the data connection within the IPsec tunnel, which would be very1625

complex.1626

Instead, we recommend a custom API provided by the inter-domain service1627

which an SDK or OEM service can call to open a new data connection, passing1628

in the parameters for the connection (such as TCP/UDP, quality of service1629

requirements, etc.). The inter-domain service would communicate over a private1630

control API with the other inter-domain service to open and authenticate the1631

connection at both ends, and return a file descriptor and cryptographic nonce1632

(securely random value at least 256 bits long) to the original SDK or OEM1633

service. This service can use that file descriptor as the data connection, and1634

should pass the nonce over its own control protocol to the corresponding OEM or1635

SDK service. This service should then pass the nonce to its inter-domain service1636

and will receive the file descriptor for the other end of the data connection in1637

reply.1638

Both inter-domain services should retain their file descriptors (which they have1639

shared with the OEM and SDK services) for the data connection, so that if the1640

kill switch (Disabling the CE domain) is enabled, they can call shutdown() on1641

the data connection to forcibly close it.1642

The inter-domain services must reserve all well-known names starting1643

with org.apertis.InterDomain (for example, org.apertis.InterDomain1 or1644

org.apertis.InterDomain1.DataConnections), and similarly all D-Bus interface1645

names. This means they must not allow these names to be used as part of the1646

OEM API shared between the export and adapter layers (Interaction of the1647

export and adapter layers).1648

A data connection cannot exist without an associated control connection1649

47

(though one control connection may be associated with many data connec-1650

tions). As data connections are opened and controlled through APIs defined on1651

the inter-domain services, there is no need for standard network-style service1652

discovery using protocols like DNS-SD24 or SSDP25.1653

Time synchronization1654

As a distributed system, the inter-domain services may require a shared clock1655

across the domains. Time synchronization is critical to correlate events and this1656

is specially important when playing audio and video streams, for example. If1657

those streams are decoded on the CE and needs to played by the AD, the AD1658

and the CE should agree on the meaning of the timestamps embedded in the1659

streams.1660

For the synchronization, there are two suitable protocols:1661

• NTP26 is a well-known protocol to synchronise time among remote sys-1662

tems. It provides millisecond or sub-millisecond accuracy over the Internet1663

or local area networks respectively;1664

• PTP27 provides microsecond or sub-microsecond accuracy and is designed1665

for local area networks.1666

In terms of latency calculation, both protocols satisfy the requirements, but we1667

recommends PTP for the following reasons:1668

• NTP uses hierarchical time sources, whereas PTP has a simpler mas-1669

ter/slave model. That means any system that is even untrusted domain1670

in a network is able to be taken by the other CE domain as a NTP source;1671

• PTP supports hardware assisted timestamps to improve accuracy. Un-1672

der Linux, the PTP hardware clock (PHC) subsystem is used to produce1673

timestamps on supported network devices.1674

Audio streams1675

To share audio streams RTP28 and its companion protocol RTCP29 are recom-1676

mended both on networked and container-based setups, for encoded and decoded1677

streams.1678

They provide jitter compensation, out-of-sequence handling and synchronization1679

across multiple different streams.1680

24https://en.wikipedia.org/wiki/Zero-configuration_networking#DNS-SD
25https://en.wikipedia.org/wiki/Simple_Service_Discovery_Protocol
26https://en.wikipedia.org/wiki/Network_Time_Protocol
27https://en.wikipedia.org/wiki/Precision_Time_Protocol
28https://en.wikipedia.org/wiki/Real-time_Transport_Protocol
29https://en.wikipedia.org/wiki/RTP_Control_Protocol

48

https://en.wikipedia.org/wiki/Zero-configuration_networking#DNS-SD
https://en.wikipedia.org/wiki/Simple_Service_Discovery_Protocol
https://en.wikipedia.org/wiki/Network_Time_Protocol
https://en.wikipedia.org/wiki/Precision_Time_Protocol
https://en.wikipedia.org/wiki/Real-time_Transport_Protocol
https://en.wikipedia.org/wiki/RTP_Control_Protocol
https://en.wikipedia.org/wiki/Zero-configuration_networking#DNS-SD
https://en.wikipedia.org/wiki/Simple_Service_Discovery_Protocol
https://en.wikipedia.org/wiki/Network_Time_Protocol
https://en.wikipedia.org/wiki/Precision_Time_Protocol
https://en.wikipedia.org/wiki/Real-time_Transport_Protocol
https://en.wikipedia.org/wiki/RTP_Control_Protocol

In particular [multiplexed RTP/RCTP][Appendix: Multiplexing RTP and1681

RTCP] can be used to multiplex both protocols over the kind of data1682

connections described above.1683

Decoded video streams1684

A fully decoded video stream consumes large quantities of bandwidth and shar-1685

ing it between domains using the same approach used by audio (RTP) can1686

only work for very small resolutions (see Memory bandwith usage on the i.MX61687

Sabrelite for the bandwidth limitations on one of the platforms targeted by1688

Apertis).1689

If a domain sends uncompressed 1080p video stream at 25fps in YUV422 for-1690

mat to another domain it requires just a bit more than 100MB/s for just the1691

stream transfer. This already makes it prohibitive on Gigabit Ethernet systems,1692

which have a theoretical maximum bandwith of 125MB/s, without including any1693

framing overhead. Even for local transfers this is a significant portion of the1694

total memory bandwidth, even more so if taking in account other activities in-1695

cluding the actual decoding and playback, plus the need for the same memory1696

bandwidth toward the GPU where the decoded frames need to be composed.1697

To be able to handle 1080p video streams it is very important that zero-copy1698

mechanisms are used for the transfer of frames, see Appendix: Audio and video1699

decoding for further considerations about how a protocol can be defined to1700

match such expectations.1701

Bulk data transfers1702

Data connections are suitable for transfers that involve large amounts of static1703

contents such as firmware images.1704

To avoid storing multiple copies of the same data on the limited local storage,1705

for instance in cases where the contents are downloaded from the Internet from1706

a lower-privilege domain before being handed over to a more isolated higher-1707

privilege domain, validation of the data such as checksum verification should be1708

done on the fly by the originator, and only the recipient should store the data1709

on its local storage.1710

Raw direct TCP connections over IPSec or raw UDP sockets can be suitable for1711

the inter-domain data transfer, as they both provide reliability, integrity and1712

confidentiality. The downside of this approach is that each application would1713

need to handle data validation and resumable transfers on its own: for this1714

reason it is preferable to handle basic data validation in the inter-domain com-1715

munication layers and provide the data to the receiver only once it is complete1716

and matches the specified cryptographic hashes.1717

The basic API thus is aimed at senders downloading large contents from the1718

Internet and directly streaming across the domains without storing them locally,1719

doing on-the-fly cryptographic validation of the streamed data. The contents1720

49

are received and re-validated on the destination domain, where they are stored1721

in a file which is passed to the destination service once the transfer is complete1722

and valid.1723

When the destination service has received the file handle it must perform any1724

additional verification of the contents. It can also link the anonymous file de-1725

scriptor to a locally-accessible file path using the linkat()30 syscall with the1726

AT_EMPTY_PATH flag or use the copy_file_range()31 syscall to get a copy of the1727

contents in the most efficient way that the kernel can provide.1728

A different mechanism can be defined where the sender stores the contents in1729

a private file and passes a file descriptor pointing to it to the inter-domain1730

communication subsystem. The receiving side then uses the copy_file_range()1731

syscall to get a copy of the data that cannot be altered by the sender and then1732

validates the data. On filesystems that supports reflinks, copy_file_range() will1733

automatically use them to provide fast copy-on-write clones of the original file:1734

this would make the operation nearly-instantaneous regardless of the amount of1735

data, and would avoid doubling the storage requirements. When reflinks can-1736

not be used, copy_file_range() will do an in-kernel copy, avoiding unnecessary1737

context-switches over normal user-space copy operations. Such approach can1738

be used on container-based setups or when a cluster file system is shared across1739

networked domains. Not many filesystems can handle reflinks, but Btrfs and1740

the OCFS2 cluster filesystem support them.1741

On systems set up such that reflinks can be used, this solution is much more1742

efficient than the alternatives, but imposes constraints on the whole system1743

that may not be acceptable, such as requiring filesystems that support reflinks1744

(such as Btrfs or OCFS2) on all the domains and ensuring that the appropriate1745

shared filesystem mounts are available to SDK services. For this reason, the1746

socket-based approach is recommended in the general case.1747

Data connections API1748

This section defines the draft for a proposed D-Bus API that SDK services could1749

use to request the creation of data channels separated from the control plane1750

connection.1751

The gateway and adapter layers are responsible for the creation and initialization1752

of those channels, while other services and applications must not be able to1753

directly create them.1754

The gateway and adapter layers use instead file descriptors passing to share the1755

channel endpoints with the requesting services and applications.1756

The API drafted here is meant to only provide a very rough guideline for those1757

implementing any real data channel API and it’s not meant to be normative:1758

real implementations can diverge from the interfaces described here and the1759

30https://manpages.debian.org/stretch/manpages-dev/link.2.en.html
31https://manpages.debian.org/stretch/manpages-dev/copy_file_range.2.en.html

50

https://manpages.debian.org/stretch/manpages-dev/link.2.en.html
https://manpages.debian.org/stretch/manpages-dev/copy_file_range.2.en.html
https://manpages.debian.org/stretch/manpages-dev/link.2.en.html
https://manpages.debian.org/stretch/manpages-dev/copy_file_range.2.en.html

actual API to be used by SDK services must be documented in a separate1760

specification.1761

/* The interface exported by the adapter/gateway to SDK services to initiate channel creation. */1762

interface org.apertis.InterDomain.DataConnection1 {1763

/* @id: the app-specific unique token used to to identify and authorize the channel1764

* @destination: the bus name of the service which should be at the other end of the channel1765

* @type: the kind of data and the protocol to be used for the data exchange.1766

* Use 'audio-rtp' for multiplexed RTP/RFC5761.1767

* @metadata_in: a dictionary of extra information that can be used to authorize/validate the transfer1768

* @metadata_out: the @metadata_in dictionary with additional information1769

* @fd: the file descriptor for the actual data exchange using the protocol specified by @type */1770

method CreateChannel (in s id,1771

in s destination,1772

in s type,1773

in a{sv} metadata_in,1774

out a{sv} metadata_out,1775

out h fd)1776

1777

/* @id: see org.apertis.InterDomain.DataConnection1.CreateChannel()1778

*1779

* If the receiver was not able to validate the channel, the `org.apertis.InterDomain.ChannelError`1780

* error is raised. */1781

method CommitChannel(in s id)1782

1783

/* @id: see org.apertis.InterDomain.DataConnection1.CreateChannel() */1784

method AbortChannel(in s id)1785

1786

/* @refclk: the reference to the IDC shared clock, in the format of defined1787

* by the `clksrc` production of RFC7273 for the `ts-refclk:` parameter */1788

method GetClockReference(out s refclk)1789

}1790

1791

/* The interface to be exported by services that can handle incoming channels.1792

* Domains that do not use a local dbus-daemon can implement a similar mechanism1793

* with the native IPC system. */1794

interface org.apertis.InterDomain.DataConnectionClient1 {1795

/* @id: see org.apertis.InterDomain.DataConnection1.CreateChannel()1796

* @sender: the bus name of the service which initiated the channel creation1797

* @type, @metadata_in, @metadata_out: see org.apertis.InterDomain.DataConnection1.CreateChannel()1798

* @proceed: true if the channel should be set up, false if it should be refused */1799

method ChannelRequested(in s id,1800

in s sender,1801

in s type,1802

in a{sv} metadata_in,1803

out a{sv} metadata_out,1804

51

out b proceed)1805

1806

/* @id: see org.apertis.InterDomain.DataConnection1.CreateChannel()1807

* @success: whether the connection has been successfully set up and @fd is usable1808

* @fd: the file descriptor from which to read the incoming data with the1809

previously agreed protocol1810

method ChannelCreated(in s id,1811

in b success,1812

in h fd)1813

}1814

1815

/* The interface private to gateway/adapter services to cross the domain boundary. */1816

interface org.apertis.InterDomain.DataConnectionInternal1 {1817

/* @id: see org.apertis.InterDomain.DataConnection1.CreateChannel()1818

* @sender: see org.apertis.InterDomain.DataConnectionClient1.ChannelRequested()1819

* @destination, @type, @metadata_in, @metadata_out: see org.apertis.InterDomain.DataConnection1.CreateChannel()1820

* @proceed: see org.apertis.InterDomain.DataConnectionClient1.ChannelRequested()1821

* @nonce: a one-time value used to authenticate the socket1822

* @socket_addr: the proto:addr:port string to be used to connect to the remote service1823

method RequestChannel(in s id,1824

in s sender,1825

in s destination,1826

in s type,1827

in a{sv} metadata_in,1828

out a{sv} metadata_out,1829

out b proceed,1830

out s nonce,1831

out s socket_addr)1832

1833

/* @id: see org.apertis.InterDomain.DataConnection1.CreateChannel()1834

* @sender: see org.apertis.InterDomain.DataConnectionClient1.ChannelRequested()1835

* @destination: see org.apertis.InterDomain.DataConnection1.CreateChannel()1836

*1837

* If the receiver was not able to validate the channel, the `org.apertis.InterDomain.ChannelError`1838

* error is raised. */1839

*/1840

method CommitChannel(in s id,1841

in s sender,1842

in s destination)1843

1844

/* @id: see org.apertis.InterDomain.DataConnection1.CreateChannel()1845

* @sender: see org.apertis.InterDomain.DataConnectionClient1.ChannelRequested()1846

* @destination: see org.apertis.InterDomain.DataConnection1.CreateChannel()1847

*/1848

method AbortChannel(in s id,1849

in s sender,1850

52

in s destination)1851

}1852

Data channel API flow example for a media player streaming audio1853

1854

A possible use-case of the API is a Media Player frontend hosted on the AD1855

with the backend on the CE. The frontend requests the backend to decode a1856

specific stream using an application specific API and passing a token with the1857

request.1858

AD | CE1859

media player gateway | adapter media player1860

frontend | backend1861

o ------ Play() ------------o------------|------------o------------------1862

----> o1863

| o <-- CreateChannel() -- o1864

o <-- RequestChannel() -- o1865

o <-- ChannelRequested() -- o |1866

o -- ChannelRequested() --> o |1867

reply |1868

o -- RequestChannel() --> o1869

reply1870

o <- connect and nonce -- o1871

o <-- ChannelCreated() ---- o | o -- CreateChannel() --> o1872

| reply1873

o <------------------------------- data channel -------------------------1874

----- o1875

The Media Player frontend initially calls the application-specific Play() method1876

on its backend, with the IDC system transparently proxying the request across1877

domains. This call must also carry an application-specific token that will be1878

used to identify the request during the channel creation procedure.1879

Once the Media Player backend has gathered some metadata about the stream1880

to be played, it requests the creation of an audio-rtp channel directed to the Me-1881

dia Player frontend by calling the org.apertis.InterDomain.DataConnection1.CreateChannel()1882

on the local adapter service.1883

The adapter service will then access the inter-domain link by calling the1884

org.apertis.InterDomain.DataConnectionInternal1.RequestChannel() method of1885

the remote gateway peer.1886

The gateway service on the AD notifies the Media Player frontend that a channel1887

has been requested, passing the request token and other application-specific1888

metadata. If the token matches and the metadata is acceptable, the Media1889

Player frontend replies to the gateway service telling it to proceed.1890

Once the request has been accepted by the destination, the gateway service1891

53

creates a listening socket for the requested channel type and returns the infor-1892

mation needed to connect to it to the remote adapter peer, including a nonce1893

to authenticate the connection.1894

As soon as the adapter gets the socket information it connects to it and sends1895

the nonce over it. On the other side the gateway will read the nonce and if does1896

not matches it immediately closes the connection.1897

Once the connection has been set up and the nonce has been successfully shared,1898

the adapter and gateway services will hand over the file descriptors of the sockets1899

that have been set up.1900

Data channel API flow example for an update manager sharing1901

firmware images1902

The bulk data transfer API is meant to be useful for update managers where1903

an agent in the Connectivity Domain fetches firmware images from the Internet1904

and shares them with the update manager in the AD which has access to the1905

devices to be updated.1906

AD | CD1907

update manager gateway | adapter OTA agent1908

o ----> GetUpdate() -------o------------|------------o------------------1909

----> o1910

| o <-- CreateChannel() -- o1911

o <-- RequestChannel() -- o1912

o <-- ChannelRequested() -- o |1913

o -- ChannelRequested() --> o |1914

reply |1915

o -- RequestChannel() --> o1916

reply1917

o <- connect and nonce -- o1918

| o -- CreateChannel() --> o1919

| reply1920

o <-----data channel ----------------------------- o1921

| o <- CommitChannel() --- o1922

o <-- CommitChannel() --- o1923

o <-- ChannelCreated() ---- o | o -- CommitChannel() --> o1924

| reply1925

The update manager calls the GetUpdate() method of the agent, with a to-1926

ken identifying the request. The OTA agent retrieves the metadata of the1927

file to be shared, in particular the size and a set of cryptographic hashes.1928

With that information, it requests the creation of a bulk-data channel with1929

the org.apertis.InterDomain.DataConnection1.CreateChannel() method of the lo-1930

cal adapter service. The OTA agent must specify the size parameter and a1931

known cryptographic hash such as sha512 in the metadata_in parameter. It must1932

54

then check in the metadata_out for the offset parameter to figure out if it must1933

resume an interrupted download.1934

The adapter service accesses the inter-domain link by calling the org.apertis.InterDomain.DataConnectionInternal1.RequestChannel()1935

method of the remote gateway peer.1936

The flow is analogous to the one in the [streaming media player case][Data1937

channel API flow example for a media player streaming audio] until the point1938

where the inter-domain socket is created: while the receiving end of the socket1939

in the streaming case is meant to be used by the receiving service, in the bulk1940

data case it is used directly by the gateway, which stores the received data in a1941

local file.1942

While it sends data through the socket, the OTA agent is expected to perform1943

on-the-fly data validation by computing cryptographic hashes on the streamed1944

contents: once it has sent all the data the agent can close the socket and call1945

org.apertis.InterDomain.DataConnectionInternal1.CommitChannel() to signal that1946

all the data has been shared successfully and that the computed hashes match,1947

or AbortChannel() otherwise.1948

Upon receiving the CommitChannel() message, the gateway checks that the file size1949

and cryptographic hashes match the expected values and raises the ChannelError1950

error otherwise. If and only if the data is valid it instead shares the file descriptor1951

pointing to the file to the OTA updater with a ChannelCreated() call.1952

Traffic control1953

Traffic control32 should be set by the inter-domain service (Protocol library1954

and inter-domain services) in the CE domain, using the standard Linux traffic1955

control functionality in the kernel33. As the control connection and each data1956

connection are separate TCP or UDP connections, they can have traffic controls1957

applied to them individually, which allows different quality of service settings for1958

individual data connections; and allows the control connection to have a higher1959

quality of service than all data connections, to help ensure it has guaranteed1960

low latency.1961

Applying traffic control in the CE domain has the advantage of knowing what1962

kernel functionality is available — if it were applied in the automotive domain,1963

its functionality would be limited by whatever is provided by the automotive1964

OS (for example, QNX). It has the disadvantage, however, of being vulnerable1965

to the CE domain being compromised: if an attacker gains control of the inter-1966

domain service in the CE domain, they can disable traffic control. However, if1967

they have gained control of that service, the only remaining mitigation is for the1968

automotive domain to shut down the CE domain, so having control over traffic1969

policy has little effect.1970

32https://en.wikipedia.org/wiki/Network_traffic_control
33http://tldp.org/HOWTO/Traffic-Control-HOWTO/intro.html

55

https://en.wikipedia.org/wiki/Network_traffic_control
http://tldp.org/HOWTO/Traffic-Control-HOWTO/intro.html
https://en.wikipedia.org/wiki/Network_traffic_control
http://tldp.org/HOWTO/Traffic-Control-HOWTO/intro.html

The specific traffic control policies used by the inter-domain service can be1971

determined later, based on the relative priorities an OEM assigns to different1972

types of traffic.1973

Protocol library and inter-domain services1974

The inter-domain communications protocol should be implemented as a library,1975

containing all layers of the protocol. The particular domain configuration which1976

the library targets should be a configure-time option, though the library must1977

support enabling the Standalone setup transport in conjunction with another1978

transport, when in developer mode (see Mock SDK implementation).1979

By implementing the protocol as a library, it can be tested easily by being1980

linked into unit tests — rather than trying to wrap the entire inter-domain1981

service daemon in a test harness. Internally, the library should implement all1982

protocol layers separately and expose them to the unit tests so that they can1983

be tested individually.1984

Furthermore, this allows the protocol code to be reused between the inter-1985

domain service in the automotive domain, and the inter-domain service in the1986

CE domain.1987

The main advantage of implementing the protocol as a library is the flexibility1988

this provides for integrating it into different automotive domain implementations1989

— it can be integrated into an existing system service (bearing in mind the1990

suggestion to keep it in a separate trust domain, Security domains), or could be1991

used as a stand-alone service daemon.1992

A reference implementation of such a stand-alone inter-domain service program1993

should be provided with the protocol library. This should provide the necessary1994

systemd service file and AppArmor profile to allow itself to be strictly confined1995

if the automotive domain OS supports this.1996

As the inter-domain communications protocol uses D-Bus, the protocol library1997

must contain an implementation of the D-Bus protocol. Note that this is not1998

a D-Bus daemon; it is a D-Bus library, like libdbus or GDBus. See Appendix:1999

D-Bus components and licensing for details about the different components in2000

D-Bus and their licensing.2001

Apart from its D-Bus library dependency, the protocol library should be de-2002

signed with minimal dependencies in order to be easily integratable into a va-2003

riety of automotive domain operating systems (from Linux through to other2004

Unixes, QNX or Autosar). If the chosen D-Bus library is available as part of2005

the automotive OS (which is more likely for libdbus than for other D-Bus li-2006

braries), it could be linked against; otherwise, it could be statically linked into2007

the protocol library.2008

libdbus itself is already quite portable, having been known to work on Linux,2009

Windows, OS X, NetBSD and QNX. It should not be difficult to port to other2010

56

POSIX-compliant operating systems.2011

Rate limiting on control messages should be implemented in the protocol li-2012

brary, so that the same functionality is present in both the automotive and CE2013

domains.2014

The protocol library should expose the encryption keys for the IPsec connection2015

used in the inter-domain communications link, including signals for when those2016

keys change (due to cookie renegotiation on the link). The keys must only be2017

exposed in development builds of the protocol library. See Debuggability for2018

more details.2019

Non Linux-based domains2020

The suggested implementation uses D-Bus the protocol, not necessarily dbus-2021

daemon the message bus daemon or libdbus the protocol library.2022

This means that for inter-domain communications purposes, only the serial-2023

ization format of D-Bus is used as a well defined RPC protocol. There’s no2024

requirement that domains run dbus-daemon or that they use a specific D-Bus2025

implementation to talk to other domains.2026

Several implementations of the D-Bus serialization format exists and their use2027

is strongly encouraged rather than reimplementing the protocol from scratch:2028

• GDBus34 is a GTK+/GNOME oriented implementation of the D-Bus pro-2029

tocol in GLib2030

• QtDBus35 is Qt module that implements the D-Bus protocol2031

• node-dbus36 is a D-Bus protocol implementation for NodeJS written in2032

pure JavaScript2033

• libdbus37 is the reference implementation of the D-Bus protocol2034

• dbus-sharp38 is a C#/.net/Mono implementation of the D-Bus protocol2035

• pydbus39 is a python implementation of the D-Bus protocol2036

On networked setups the D-Bus-based protocol is transported over TCP, relying2037

on IPSec for authentication, confidentiality and reliability.2038

If IPSec nor TLS are available, those properties cannot be guaranteed, and thus2039

such setup is strongly discouraged. In that case every input should be treated2040

as potentially malicious: the trusted domains must export only a very reduced2041

34https://developer.gnome.org/gio/stable/gdbus.html
35http://doc.qt.io/qt-5/qtdbus-index.html
36https://github.com/sidorares/node-dbus
37https://dbus.freedesktop.org/doc/api/html/
38https://github.com/mono/dbus-sharp
39https://github.com/LEW21/pydbus

57

https://developer.gnome.org/gio/stable/gdbus.html
http://doc.qt.io/qt-5/qtdbus-index.html
https://github.com/sidorares/node-dbus
https://dbus.freedesktop.org/doc/api/html/
https://github.com/mono/dbus-sharp
https://github.com/LEW21/pydbus
https://developer.gnome.org/gio/stable/gdbus.html
http://doc.qt.io/qt-5/qtdbus-index.html
https://github.com/sidorares/node-dbus
https://dbus.freedesktop.org/doc/api/html/
https://github.com/mono/dbus-sharp
https://github.com/LEW21/pydbus

set of interfaces, which must be conceived in a way that any kind of misuse does2042

not lead to harm.2043

Service discovery2044

Accordingly to the use of the D-Bus serialization protocol, each service2045

exported over the inter-domain communication channels is identified by2046

a well-known name subject specific constraints40, starting with the re-2047

versed DNS domain name of the author of the service (for instance,2048

com.collabora.CarOS.ClimateControl1 for a potential service written by2049

Collabora41.2050

Only one service at a time can own such names on each domain, but the owner-2051

ship is not tracked across domains and collision may happen due to a transitional2052

state during an upgrade or other causes: each setup is thus responsible to define2053

a deterministic collision resolution procedure should two domains export the2054

same service name.2055

The adapter layer is responsible to inspect on which channel each service is2056

available. The NameOwnerChanged signal42 must be used by the adapter layer to2057

track the availability of services on each connection and to detect when a service2058

is no longer available or changed ownership (for example because it has been2059

restarted). The org.freedesktop.DBus.ListActivatableNames()43 message can be2060

used to gather the initial list of available services.2061

After an upgrade a domain may stop providing a specific service and2062

another domain may start providing it instead: both the old and new2063

domains must trigger the NameOwnerChanged signal44 in response to the2064

org.freedesktop.DBus.ReleaseName()45 and org.freedesktop.DBus.RequestName()462065

calls. No specific ordering is required and thus the service may be temporarily2066

unavailable or the two domains may export the same service name at the same2067

time: the collision resolution procedure must choose the one on the connection2068

with the highest priority.2069

In the simplest case, each domain must be given an unique priority with the2070

AD having the highest priority. The relative priority between the CE domains2071

is used to provide deterministic service access when a service name exists on2072

multiple connections. As a result, the priority list must be static and the priority2073

of CE domains can be assigned arbitrarily for each specific setup.2074

40https://dbus.freedesktop.org/doc/dbus-specification.html#message-protocol-names-bus
41https://collabora.com
42https://dbus.freedesktop.org/doc/dbus-specification.html#bus-messages-name-owner-

changed
43https://dbus.freedesktop.org/doc/dbus-specification.html#bus-messages-list-

activatable-names
44https://dbus.freedesktop.org/doc/dbus-specification.html#bus-messages-name-owner-

changed
45https://dbus.freedesktop.org/doc/dbus-specification.html#bus-messages-release-name
46https://dbus.freedesktop.org/doc/dbus-specification.html#bus-messages-request-name

58

https://dbus.freedesktop.org/doc/dbus-specification.html#message-protocol-names-bus
https://collabora.com
https://dbus.freedesktop.org/doc/dbus-specification.html#bus-messages-name-owner-changed
https://dbus.freedesktop.org/doc/dbus-specification.html#bus-messages-list-activatable-names
https://dbus.freedesktop.org/doc/dbus-specification.html#bus-messages-name-owner-changed
https://dbus.freedesktop.org/doc/dbus-specification.html#bus-messages-release-name
https://dbus.freedesktop.org/doc/dbus-specification.html#bus-messages-request-name
https://dbus.freedesktop.org/doc/dbus-specification.html#message-protocol-names-bus
https://collabora.com
https://dbus.freedesktop.org/doc/dbus-specification.html#bus-messages-name-owner-changed
https://dbus.freedesktop.org/doc/dbus-specification.html#bus-messages-name-owner-changed
https://dbus.freedesktop.org/doc/dbus-specification.html#bus-messages-list-activatable-names
https://dbus.freedesktop.org/doc/dbus-specification.html#bus-messages-list-activatable-names
https://dbus.freedesktop.org/doc/dbus-specification.html#bus-messages-name-owner-changed
https://dbus.freedesktop.org/doc/dbus-specification.html#bus-messages-name-owner-changed
https://dbus.freedesktop.org/doc/dbus-specification.html#bus-messages-release-name
https://dbus.freedesktop.org/doc/dbus-specification.html#bus-messages-request-name

When accessing a service name that exists on more than one connection, the2075

service that exists on the connection with the highest priority must be given2076

precedence by the adapter layer.2077

CE domains should not be able to spoof trusted services exported by the AD:2078

for this reason a static list of services meant to be exported only by the AD2079

must be defined and the adapter layer must ignore matching services exported2080

by other connections, even if the service is not currently available on the AD2081

connection itself.2082

Particular care must be taken to ensure each domain can be fully booted with-2083

out blocking on services hosted on other domains, to avoid untracked circular2084

dependencies.2085

SDK services must access the above service names through the private bus2086

instance exported by the adapter layer, which proxies them from all the inter-2087

domain channels, abstracting the complexities of inter-domain communications.2088

SDK services are not aware of the fact that the services are hosted on different2089

domains.2090

Automotive domain export layer2091

To integrate the inter-domain communications system into an automotive do-2092

main operating system, the APIs to be shared must be exported as objects on2093

the D-Bus connection provided by the inter-domain service. This is done as an2094

export layer in the inter-domain service in the automotive domain, customised2095

for the OEM and their specific APIs. The export layer could be implemented2096

as pure C calls from within the same process (no protocol at all), or D-Bus, or2097

kdbus, or QNX message passing, or something else entirely. If D-Bus bus is2098

used, a D-Bus daemon would need to be running on the automotive domain;2099

otherwise, no D-Bus daemon would be needed.2100

For example, if the automotive domain provides the APIs which are to be ex-2101

posed over the inter-domain connection as:2102

• C APIs in headers — the inter-domain service would call those APIs di-2103

rectly, and the export layer would essentially be those C calls;2104

• daemons with UNIX socket connections — the inter-domain service would2105

connect to those sockets and run whatever protocol is specified by the2106

daemons, and the export layer would essentially be the socket connections2107

and protocol implementations;2108

• D-Bus services — the inter-domain service would connect to a D-Bus dae-2109

mon on the automotive domain and translate the services’ D-Bus APIs2110

into an API to expose on the inter-domain communications link (see be-2111

low), and the export layer would be the D-Bus daemon, D-Bus library in2112

the inter-domain service, and the code to translate between the two D-Bus2113

APIs.2114

59

The APIs must be exported under well-known names47 formatted as reverse-2115

DNS names owned by the OEM. For example, if the AD operating system2116

was written by Collabora, APIs would be exported using well-known names2117

starting with com.collabora, such as com.collabora.CarOS.EngineManagement12118

or com.collabora.CarOS.ClimateControl1.2119

The API formed by these exported D-Bus objects is vendor-specific, but should2120

maintain its own stability guarantees — for every backwards-incompatible2121

change to this API, there must be a corresponding update to the CE domain2122

to handle it. Consequently, we recommend versioning the exported D-Bus2123

APIs48.2124

APIs which the OEM does not want to make available on the inter-domain2125

communications link (for example, because they are not able to handle untrusted2126

data, or are too powerful to expose) must not be exported onto the D-Bus2127

connection. This effectively forms a whitelist of exposed services.2128

For each piece of functionality exposed by the AD, suitable safety limits must be2129

applied (Safety limits on AD APIs). If the implementation of that functionality2130

already applies the safety limits, nothing more needs to be done. Otherwise,2131

the safety limits must be enforced in the interface code which exports that2132

functionality onto the inter-domain D-Bus connection.2133

Similarly, for each piece of functionality exposed by the AD, if it fails to respond2134

to a call by the inter-domain service, the service must return an error to the2135

CE over the inter-domain D-Bus connection, rather than timing out. This is2136

especially important in systems where the export layer is a set of C calls —2137

the implementation must take care to ensure those calls cannot block the inter-2138

domain service.2139

If the vendor wants to implement per-API kill switches for services exported2140

by the automotive domain, these must be implemented in the export layer (see2141

Disabling the CE domain).2142

Consumer-electronics domain adapter layer2143

Paired with the OEM-specific API export code in the automotive domain is an2144

adapter layer in the CE domain. This adapts the API exported by the services2145

on the automotive domain to the stable SDK APIs used by applications in the2146

CE domain. The layer has an implementation in each of the SDK services in2147

the CE domain.2148

This adapter layer does not have a trust boundary — each part of it lies within2149

the trust domain of the relevant SDK service.2150

These adapters connect to a private D-Bus bus, which the inter-domain service2151

in the CE domain is also connected to. The inter-domain service exports the2152

47http://dbus.freedesktop.org/doc/dbus-specification.html#message-protocol-names-bus
48http://dbus.freedesktop.org/doc/dbus-api-design.html#api-versioning

60

http://dbus.freedesktop.org/doc/dbus-specification.html#message-protocol-names-bus
http://dbus.freedesktop.org/doc/dbus-api-design.html#api-versioning
http://dbus.freedesktop.org/doc/dbus-api-design.html#api-versioning
http://dbus.freedesktop.org/doc/dbus-api-design.html#api-versioning
http://dbus.freedesktop.org/doc/dbus-specification.html#message-protocol-names-bus
http://dbus.freedesktop.org/doc/dbus-api-design.html#api-versioning

OEM APIs from the automotive domain on this bus, and the adapters consume2153

them.2154

The private bus could be implemented either by running dbus-daemon with a2155

custom bus configuration, or by implementing it directly in the inter-domain2156

service, and having all adapters connect directly to the service. In both cases,2157

the trust boundary between the adapters (within the trust domains of the SDK2158

services) and the inter-domain service are enforced.2159

Interaction of the export and adapter layers2160

The interaction between the export and adapter layers is important in main-2161

taining compatibility between different versions of the AD and CE as they are2162

upgraded separately. The CE is typically upgraded much more frequently than2163

the AD. Both are customised to the OEM.2164

Initial deployment2165

The OEM develops both layers, and stabilises an initial version of their inter-2166

domain API, using a version number (for example, 1). The export layer exports2167

objects from the automotive domain, and the adapter layer imports those same2168

objects. There may be functionality exposed on the objects which the SDK2169

APIs currently do not support — in which case, the adapter layer ignores that2170

functionality.2171

CE is upgraded, AD remains unchanged2172

A new release of Apertis is made, which expands the SDK APIs to support2173

more functionality. The OEM integrates this release of Apertis and updates2174

their adapter layer to tie the new SDK APIs to previously-unused objects from2175

the inter-domain link.2176

The version number of the inter-domain API remains at 1.2177

AD is upgraded, CE remains unchanged2178

The automotive domain OS is upgraded, and more vehicle functionality becomes2179

available to expose on the inter-domain connection. The OEM chooses to expose2180

most of this functionality using the inter-domain service. For some objects, this2181

results in no API changes. For other objects, it results in new methods being2182

added, but no old ones are changed. For some objects, it results in some old2183

methods being removed or their semantics changed. For these objects, the2184

OEM now exports two interfaces on the inter-domain service: one at version2185

1, exporting the old API; and one at version 2, exporting the new API. The2186

version number of other inter-domain APIs remains at 1.2187

The CE domain software remains unchanged, which means it continues to use2188

the version 1 APIs. This continues to work because all objects on the inter-2189

61

domain API continue to export version 1 APIs (in addition to some version 22190

APIs).2191

CE is upgraded again2192

The next time the CE domain is upgraded, its adapter layer can be modified by2193

the OEM to use the new version 2 APIs for some of the services. If this updated2194

version of the CE domain is guaranteed to only be used with new versions of2195

the AD, the adapter layer can drop support for version 1 APIs. If the updated2196

CE domain may be used with old versions of the AD, it must support version 12197

and version 2 (or just version 1) APIs, and use whichever it prefers.2198

Flow for a given SDK API call2199

In the following figure, particular attention should be paid to the restrictions on2200

the protocols in use for each link. For the links between the application and the2201

inter-domain service in the CE domain, any version of the D-Bus protocol can be2202

used, including kdbus or another future version. This depends only on the dbus-2203

daemon and D-Bus libraries available in the CE domain. For the link between2204

the two inter-domain services, the protocol must always be at least D-Bus 1.02205

over TCP over IPsec. If both peers support a later version of the protocol,2206

they may use it — but both must always support D-Bus 1.0 over TCP over2207

IPsec. For the link between the inter-domain service in the automotive domain2208

and the OEM service, whatever protocol the OEM finds most appropriate for2209

implementing their export layer should be used. This could be pure C calls2210

from within the same process (no protocol at all), or D-Bus, or kdbus, or QNX2211

message passing, or something else entirely.2212

2213

Apertis IDC message flow, following a message being sent from ap-2214

plication to hardware; the message flow is the same in reverse for2215

62

message replies from the hardware2216

Trusted path to the AD2217

Providing a trusted input and output path between the user and the automo-2218

tive domain is out of scope for this design — it is a problem to be solved by2219

the graphics sharing and input handling designs. However, it is worth noting2220

that the solution must not involve communication (unauthenticated, or authen-2221

ticated via the CE domain) over the inter-domain link. If it did, a compromised2222

CE domain could be used to forge this communication and gain control of the2223

trusted path to the AD — which likely results in a large privilege escalation.2224

A trusted path should be implemented by direct communication between the2225

input and output devices and the automotive domain, or mediating such com-2226

munication through the hypervisor, which is trusted.2227

Developer mode2228

In order to support connecting the CE domain from an SDK on a developer’s2229

laptop to the automotive domain in a development vehicle, the ‘separate boards2230

setup with other devices’ configuration must be used, with the CE domain and2231

the automotive domain connected to the developer’s network (which might have2232

other devices on it).2233

In order to allow the SDK to connect, the vehicle must be in a ‘developer mode’.2234

This is because the CE domain is entirely untrusted when it is provided by the2235

SDK, because the developer may choose to disable security features in it (indeed,2236

they may be working on those security features).2237

Open question: What cryptography should be used to implement this authen-2238

tication, and the division of trust between development and production devices?2239

A likely solution is to only have the AD accept the CE connection if it connects2240

with a ‘production’ key signed by the vehicle OEM.2241

Mock SDK implementation2242

In order to allow applications to be developed against the Apertis SDK, imple-2243

mentations of all the SDK APIs need to be provided as part of the official SDK2244

virtual machine distribution. These implementations need to be fully featured,2245

otherwise application developers cannot develop against the unimplemented fea-2246

tures.2247

There are two implementation options:2248

1. Have an Apertis SDK adapter layer which provides the mock implemen-2249

tations, and which does not use an inter-domain service or mock up any2250

of the automotive domain.2251

2. Write the mock implementations as stand-alone services which are log-2252

ically part of the automotive domain (even though there is no domain2253

63

separation in the SDK). Expose these services on the inter-domain link2254

using an Apertis SDK export layer; and adapt the services to the actual2255

SDK APIs using an Apertis SDK adapter layer.2256

The inter-domain services would be running in the same domain (the2257

SDK) and would communicate over a loopback TCP socket (see Stan-2258

dalone setup).2259

Option #1 has a much simpler implementation, but option #2 means that the2260

inter-domain communications code paths are tested by all application develop-2261

ers. Similarly, option #1 introduces the possibility for behavioural differences2262

between the mock adapter layer and the production inter-domain communica-2263

tion system, which could affect how application developers write their applica-2264

tions; option #2 reduces the potential for that considerably.2265

As option #2 uses the inter-domain service in the CE domain, it also allows for2266

the possibility of connecting the CE domain to a different automotive domain2267

— rather than the mock one provided by the SDK, a developer could connect2268

to the automotive domain in a development vehicle (Developer mode).2269

Hence, our recommendation is for option #2.2270

Debuggability2271

The debuggability of the inter-domain communications link is important for2272

many reasons, from integrating two domains to bringing up a new automotive2273

domain (with its export and adapter layers) to developing a new SDK API.2274

Referring to the figure in Overall architecture, debugging of:2275

• applications and the SDK services happens using normal tools and meth-2276

ods described in the Debug and Logging design49;2277

• communications between the dbus-daemon (private bus) and inter-domain2278

service (CE domain) happens using normal D-Bus monitoring tools (such2279

as Bustle50 or dbus-monitor51), though this requires the developer to gain2280

access to the private bus’ socket;2281

• communications between the inter-domain services happens using a special2282

debug option in the services (see below);2283

• the export layer and OEM services happens using tools and methods spe-2284

cific to how the OEM has implemented the export layer.2285

If possible, all debugging should happen on the SDK side, in the adapter layer or2286

above, as this allows the greatest flexibility in debugging techniques — none of2287

the communications at that level are encrypted, so are accessible to a developer2288

user with the appropriate elevated permissions.2289

49https://martyn.pages.apertis.org/apertis-website/concepts/debug-and-logging/
50http://willthompson.co.uk/bustle/
51http://dbus.freedesktop.org/doc/dbus-monitor.1.html

64

https://martyn.pages.apertis.org/apertis-website/concepts/debug-and-logging/
http://willthompson.co.uk/bustle/
http://dbus.freedesktop.org/doc/dbus-monitor.1.html
https://martyn.pages.apertis.org/apertis-website/concepts/debug-and-logging/
http://willthompson.co.uk/bustle/
http://dbus.freedesktop.org/doc/dbus-monitor.1.html

If the connection between the inter-domain services (the TCP/IPsec link be-2290

tween domains) needs to be debugged, it can be complex, as any debugging2291

tool needs to be able to decrypt the IPsec encryption. Wireshark is able to do2292

this52, if given the encryption key in use by the IPsec connection. This key may2293

change over the lifetime of a connection (as the connection cookie is refreshed),2294

and hence needs to be exported dynamically by the inter-domain service. In2295

order to allow debugging both ends of the connection, it should be implemented2296

in the protocol library (Protocol library and inter-domain services). In the CE2297

domain, it should be exposed as a D-Bus interface on the private bus which is2298

part of the adapter layer. This limits its access to developers who have access2299

to that bus.2300

Interface org.apertis.InterDomainConnection.Debug1 {2301

/* Mapping from IKEv1 initiator cookie to encryption key. */2302

readonly property a{ss} Ike1Keys;2303

/* Mapping from IKEv2 tuple of (initiator SPI, responder SPI) to tuple2304

* of (SK_ei, SK_er, encryption algorithm, SK_ai, SK_ar, integrity2305

* algorithm). Algorithms are enumerated types, with values to be2306

* documented by the implementation. Other parameters are provided as2307

* hexadecimal strings to allow for varying key lengths. */2308

readonly property a((ss)(ssssussu)) Ike2Keys;2309

}2310

A new Lua plugin53 in Wireshark could connect to this interface and listen for2311

signals of updates to the connection’s keys, and use those to update Wireshark’s2312

IKE decryption table. Wireshark is the suggested debugging tool to use, as it is2313

a mature network analysis tool which is well suited to analysing the protocols2314

being sent over the inter-domain connection.2315

In the automotive domain, the key information provided by the protocol library2316

should be exposed in a manner which best fits the debugging infrastructure and2317

tools available for the automotive operating system.2318

In both domains, this interface must only be exposed in developer builds of the2319

inter-domain services. It must not be available in production, even to a user with2320

elevated privileges. To expose it would allow all inter-domain communications2321

to be decrypted.2322

External watchdog2323

There must be an external watchdog system which watches both the automotive2324

and consumer–electronics domains, and which restarts either of them if they2325

crash and fail to restart themselves.2326

In order to prevent one compromised domain from preventing a restart of the2327

other domain (a denial of service attack), each domain must only be able to send2328

52https://ask.wireshark.org/questions/12019/how-can-i-decrypt-ikev1-andor-esp-packets
53https://ask.wireshark.org/questions/44562/update-decryption-table-from-lua

65

https://ask.wireshark.org/questions/12019/how-can-i-decrypt-ikev1-andor-esp-packets
https://ask.wireshark.org/questions/12019/how-can-i-decrypt-ikev1-andor-esp-packets
https://ask.wireshark.org/questions/12019/how-can-i-decrypt-ikev1-andor-esp-packets
https://ask.wireshark.org/questions/44562/update-decryption-table-from-lua
https://ask.wireshark.org/questions/12019/how-can-i-decrypt-ikev1-andor-esp-packets
https://ask.wireshark.org/questions/44562/update-decryption-table-from-lua

heartbeats to its own watchdog, and not the watchdog of the other domain.2329

The implementation of the watchdog depends on the configuration:2330

• Standalone setup: No watchdog is necessary, as the configuration is not2331

safety critical.2332

• Basic virtualised setup: The watchdog should be a software component in2333

the hypervisor, exposed as virtualised watchdog hardware in the guests.2334

• Separate CPUs setup: A hardware watchdog on the board should be used,2335

connected to both domains. As an exception to the general principle that2336

the CE domain should not be allowed to access hardware, it must be able2337

to access its own watchdog (and must not be able to access the automotive2338

domain’s watchdog).2339

• Separate boards setup: A hardware watchdog on each board should be2340

used, connected to the domain on that board.2341

• Separate boards setup with other devices: Same as the separate boards2342

setup.2343

• Multiple CE domains setup: Same as the separate boards setup.2344

Tamper evidence and hardware encryption2345

The basic design for providing a root of confidentiality and integrity for the2346

system in hardware should be provided by the Secure Boot design — this design2347

can only assume that some confidential encryption key is provided which is used2348

to decrypt parts of the system on boot which should remain confidential.2349

As of February 2016 the Secure Boot design is still forthcoming2350

One possibility for implementing this is for a confidential key store to be pro-2351

vided by the automotive domain, storing keys which encrypt the bootloader2352

and root key store for the CE. When booting the CE, the AD would decrypt2353

its bootloader and hence its root key store, making the keys necessary for inter-2354

domain communications (amongst others) available in the CE’s memory. Note2355

that this suggestion should be ignored if it conflicts with recommendations in2356

the Secure Boot design, once that’s published.2357

A critical requirement of the system is that none of the keys for encrypting inter-2358

domain communications (or for protecting those keys) can be shared between2359

vehicles — they must be unique per vehicle (No global keys in vehicles). This2360

implies that keys must be generated and embedded into each vehicle as a stage2361

in the imaging process for the domains.2362

A corollary to this is that none of those keys can be stored by the vendor,2363

trusted dealer or other global organisations associated with the vehicles; as2364

to do so would provide a single point of failure which, if compromised by an2365

66

attacker, could reveal the keys for all vehicles and hence potentially allow them2366

all to be compromised easily.2367

Tamper evidence is an important requirement for the system (Tamper evi-2368

dence), providing the ability to determine if a vehicle has been tampered with2369

in case of an accident or liability claim.2370

The most appropriate way to provide tamper evidence for the hardware depends2371

on the hardware and how it is packaged in the vehicle. Typical approaches to2372

tamper evidence involve sealing the domain’s circuitry, including all access and2373

I/O ports, in a casing which is sealed with tamper evident seals54. If a garage or2374

trusted vehicle dealer needs to access the domain for maintenance or updates,2375

they must break the seals, enter this in the vehicle’s maintenance log, and replace2376

the seals with new ones once maintenance is complete.2377

Tamper evidence for software should be provided through the integrity proper-2378

ties of the Secure Boot design, as in any trusted platform module55 system.2379

Disabling the CE domain2380

The automotive domain must be able to disable the power supply to the CE2381

domain (or otherwise prevent it from booting), and must be able to prevent2382

inter-domain communications at the same time.2383

Preventing inter-domain communications should be implemented by having the2384

automotive domain inter-domain service read a ‘kill switch’ setting. If this is2385

set, it should close any open inter-domain communication links, and refuse to2386

accept new ones while the setting is still set.2387

Preventing the CE domain from booting can be done in a variety of ways,2388

depending on the hardware functionality available. For example, it could be2389

done by controlling a solid-state relay on the CE domain’s power supply. Or,2390

if the CE domain implements secure boot, the boot process could require the2391

automotive domain to decrypt part of the CE domain bootloader using a key2392

known only to the automotive domain — if the kill switch is set, this key would2393

be unavailable.2394

Open question: What hardware provisions are available for controlling the2395

power supply or boot process of the CE domain? How should this integrate2396

with the secure boot design?2397

The kill switch is intentionally kept simple, controlling whether all inter-domain2398

communications are enabled or disabled, and providing no finer granularity.2399

This is intended to make it completely robust — if support were added for2400

selectively killing some of the control APIs or data connections on the inter-2401

domain communications link, but not others, there would be much greater scope2402

for bugs in the kill switch which could be exploited to circumvent it.2403

54https://en.wikipedia.org/wiki/Security_seal
55https://en.wikipedia.org/wiki/Trusted_Platform_Module

67

https://en.wikipedia.org/wiki/Security_seal
https://en.wikipedia.org/wiki/Trusted_Platform_Module
https://en.wikipedia.org/wiki/Security_seal
https://en.wikipedia.org/wiki/Trusted_Platform_Module

If the OEM wants to provide finer grained kill switches for different APIs in2404

the automotive domain, they must implement them as part of those services,2405

or as part of the export layer which connects those services to the inter-domain2406

service.2407

Reporting malicious applications2408

There are three options for reporting malicious behaviour of applications to the2409

Apertis store:2410

1. Report from the inter-domain service in the automotive domain, based on2411

error responses from the OEM APIs.2412

2. Report from the inter-domain service in the CE domain, based on error2413

responses from the automotive domain.2414

3. Report from the SDK API adapter layers, based on error responses from2415

the automotive domain.2416

They are presented in decreasing order of reliability, and increasing order of2417

helpfulness.2418

Option #1 is reliable (an attacker can only prevent a detected malicious action2419

from being reported by compromising the automotive domain), but not helpful2420

(the automotive domain does not have contextual information about the access,2421

such as the application bundle which originally made the request — bundle iden-2422

tifiers cannot be sent across the inter-domain link as that would mean partially2423

defining the OEM APIs). This option has the additional disadvantage that it2424

requires the AD to communicate directly with the Apertis store without going2425

via the CE, which likely means the AD is on the Internet and could potentially2426

be compromised by a Heartbleed-style vulnerability in a communication path2427

that was intended to be secure. Options #2 and #3 do not have this disadvan-2428

tage, because in those options it is the CE that needs to communicate on the2429

Internet.2430

Option #3 is unreliable (an attacker can prevent a detected malicious action2431

from being reported by compromising that SDK service in the CE domain),2432

but most helpful (the CE domain knows all contextual information about the2433

access, including the application bundle identifier, parameters sent to the SDK2434

API by the application, and the output of the adapter layer which was sent to2435

the inter-domain link).2436

We recommend option #3 as it is the most helpful, and we believe that the2437

additional contextual information it provides outweighs the potential loss of2438

reports from most severely compromised vehicles. This is one part of many2439

which contribute to the security of the system.2440

An alternative would be to implement two or all of the options, and leave it up2441

to the Apertis store software to combine or deduplicate the reports.2442

68

Suggested roadmap2443

One the design has been reviewed, it can be compared to the existing state of2444

the inter-domain communication system, and a roadmap produced for how to2445

reconcile the differences (if there are any).2446

Open question: How does this design compare to the existing state of the2447

inter-domain communication system?2448

Requirements2449

Open question: Once the design is finalised a little more, it can be related2450

back to the requirements to ensure they are all satisfied.2451

Open questions2452

• Existing inter-domain communication systems: Are there any relevant2453

existing systems to compare against?2454

• IPSec versus TLS: What is the security of the IPsec protocol in its current2455

(2015) state?2456

• IPSec versus TLS: What is the performance of TCP and UDP over IPsec,2457

TLS over TCP and DTLS over UDP on the Apertis reference hardware?2458

• Configuration designs: What trade-off do we want between performance2459

and testability for the different transport layer configurations?2460

• Configuration designs: What more detailed configuration options can we2461

specify for setting up IPsec? For example, disabling various optional fea-2462

tures which are not needed, to reduce the attack surface. What IKE2463

service should be used?2464

• Configuration designs: A lot of business logic for control over OEM li-2465

cencing can be implemented by the choice of the CA hierarchy used by2466

the inter-domain communication system. What business logic should be2467

possible to implement?2468

• Configuration designs: Consider key control, revocation, protocol obsoles-2469

cence, and various extensions for pinning keys and protocols.2470

• Configuration designs: What can be done in the automotive domain to2471

reduce the possibility of exploits like Heartbleed affecting the inter-domain2472

communications link? This is a trade-off between the stability of AD2473

updates (high; rarely released) and the pace of IPsec and TLS security2474

research and updates and the need for crypto-agility (fast). Heartbleed2475

was a bug in a bad implementation of an optional and not-very-useful TLS2476

extension.2477

• Control protocol: How should the multiple CE configuration (section2478

8.3.2) interact with D-Bus signals? Can the adapter layer perform the2479

69

broadcast to all subscribers?2480

• Developer mode: What cryptography should be used to implement this2481

authentication, and the division of trust between development and pro-2482

duction devices? A likely solution is to only have the AD accept the CE2483

connection if it connects with a ‘production’ key signed by the vehicle2484

OEM.2485

• Disabling the CE domain: What hardware provisions are available for2486

controlling the power supply or boot process of the CE domain? How2487

should this integrate with the secure boot design?2488

• Suggested roadmap: How does this design compare to the existing state2489

of the inter-domain communication system?2490

• Requirements: Once the design is finalised a little more, it can be related2491

back to the requirements to ensure they are all satisfied.2492

Summary of recommendations2493

Open question: Once the design is finalised a little more, and a suggested2494

roadmap has been produced (Suggested roadmap), it can be summarised here.2495

Appendix: D-Bus components and licensing2496

The terminology around D-Bus can sometimes be confusing; here are some2497

details of its components and their licensing.2498

• D-Bus is a protocol56 which defines an on-the-wire format for marshalling2499

and passing messages between peers, a type system for structuring those2500

messages, an authentication protocol for connecting peers, a set of trans-2501

ports for sending messages over different underlying connection media,2502

and a series of high-level APIs for implementing common API design pat-2503

terns such as properties and object enumeration. It has a reference im-2504

plementation (libdbus and dbus-daemon), but these are by no means the2505

only implementations. The protocol has had full backwards compatibility2506

since 200657.2507

• A D-Bus daemon (for example: dbus-daemon, kdbus) is a process which2508

arbitrates communication between D-Bus peers, implementing multicast2509

communications (such as signals) without requiring all peers to connect to2510

each other. Different D-Bus daemons have different performance charac-2511

teristics and licensing. For example, kdbus runs in the kernel to improve2512

performance by reducing context switching overhead, at the cost of some2513

features; dbus-daemon runs in user space with more overhead, but is still2514

quite performant.2515

56http://dbus.freedesktop.org/doc/dbus-specification.html
57http://dbus.freedesktop.org/doc/dbus-specification.html#stability

70

http://dbus.freedesktop.org/doc/dbus-specification.html
http://dbus.freedesktop.org/doc/dbus-specification.html#stability
http://dbus.freedesktop.org/doc/dbus-specification.html
http://dbus.freedesktop.org/doc/dbus-specification.html#stability

• A D-Bus library (for example: libdbus, GDBus) is a set of code which2516

implements the D-Bus protocol for one peer, converting high-level D-Bus2517

API calls into on-the-wire messages to send to another peer or a D-Bus2518

daemon to send to other peers. Different D-Bus libraries have different2519

performance characteristics and licensing.2520

Licensing2521

• The D-Bus Specification is freely licensed and has no restrictions on who2522

may implement it or how those implementations are licensed.2523

• libdbus and dbus-daemon are both licensed under your choice of the2524

AFLv2.158, or the GPLv259 (or later versions).2525

– Hence, if the AFL license is chosen, libdbus and dbus-daemon may2526

be used in non-open-source products.2527

• GDBus is part of GLib, and hence is licensed under the LGPLv2.060 (or2528

later versions).2529

Appendix: D-Bus performance2530

libdbus and dbus-daemon are reasonably performant, having been used in vari-2531

ous low-resource products (such as mobile phones) over the years. There have2532

not been any quantitative evaluations of their performance in terms of latency2533

or memory usage recently, but some have been done in61 the62 past63.2534

As indicative numbers only, D-Bus (using dbus-python64 and dbus-daemon, not2535

kdbus) gives performance of roughly:2536

• 20,000 messages per second throughput2537

• 130MB per second bandwidth2538

• 0.1s end-to-end latency between peers for a given message2539

– This is likely an overestimate, as ping-pong tests written in C have2540

given latency of 200µs2541

• 2.5MB memory footprint (RSS) for dbus-daemon in a desktop configura-2542

tion2543

58https://spdx.org/licenses/AFL-2.1.html
59http://spdx.org/licenses/GPL-2.0+
60http://spdx.org/licenses/LGPL-2.0+
61https://desktopsummit.org/sites/www.desktopsummit.org/files/will-thompson-dbus-

performance.pdf
62http://blog.asleson.org/index.php/2015/09/01/d-bus-signaling-performance/
63https://blogs.gnome.org/abustany/2010/05/20/ipc-performance-the-return-of-the-

report/
64http://www.freedesktop.org/wiki/Software/DBusBindings/

71

https://spdx.org/licenses/AFL-2.1.html
http://spdx.org/licenses/GPL-2.0+
http://spdx.org/licenses/LGPL-2.0+
https://desktopsummit.org/sites/www.desktopsummit.org/files/will-thompson-dbus-performance.pdf
http://blog.asleson.org/index.php/2015/09/01/d-bus-signaling-performance/
https://blogs.gnome.org/abustany/2010/05/20/ipc-performance-the-return-of-the-report/
http://www.freedesktop.org/wiki/Software/DBusBindings/
https://spdx.org/licenses/AFL-2.1.html
http://spdx.org/licenses/GPL-2.0+
http://spdx.org/licenses/LGPL-2.0+
https://desktopsummit.org/sites/www.desktopsummit.org/files/will-thompson-dbus-performance.pdf
https://desktopsummit.org/sites/www.desktopsummit.org/files/will-thompson-dbus-performance.pdf
http://blog.asleson.org/index.php/2015/09/01/d-bus-signaling-performance/
https://blogs.gnome.org/abustany/2010/05/20/ipc-performance-the-return-of-the-report/
https://blogs.gnome.org/abustany/2010/05/20/ipc-performance-the-return-of-the-report/
http://www.freedesktop.org/wiki/Software/DBusBindings/

– So this could likely be reduced if needed — the amount of message2544

buffering dbus-daemon provides is configurable2545

Note that these numbers are from performance evaluations on various versions of2546

dbus-daemon, so should be considered indicative of an order of magnitude only.2547

As with all performance measurements, accurate values can only be measured2548

on the target system in the target configuration.2549

The most commonly accepted disadvantage of using D-Bus with dbus-daemon2550

is the end-to-end latency needed to send a message from one peer, through the2551

kernel, to the dbus-daemon, then through the kernel again, to the receiving2552

peer. This can be reduced by using kdbus, which halves the number of context2553

switches needed by implementing the D-Bus daemon in kernel space65. However,2554

kdbus has not yet been accepted into the upstream kernel, and (as of February2555

2016) there is some concern that this might not happen due to kernel politics.2556

It can be integrated into distributions as a kernel module, although it relies on a2557

few features only available in kernel version 4.0 or newer. This means it should2558

be straightforward to integrate in the CE, but potentially not in the AD (and2559

certainly not if the AD doesn’t run Linux — in such cases, dbus-daemon can2560

be used).2561

Overall, the performance of a D-Bus API depends strongly on the API design.2562

Good [D-Bus API design] eliminates redundant round trips (which have a high2563

latency cost), and offloads high-bandwidth or latency sensitive data transfer2564

into side channels such as UNIX pipes, whose identifiers are sent in the D-Bus2565

API calls as FD handles66.2566

Appendix: Software versus hardware encryption2567

The choice about whether to use software or hardware encryption is a tradeoff2568

between the advantages and disadvantages of the options. There are actually2569

several ways of providing ‘hardware encryption’, which should be considered2570

separately. In order from simplest to most complex:2571

• Encryption acceleration instructions in the processor, such as the2572

AES instruction set67, CLMUL68 or the ARM cryptography extensions69.2573

These are available in most processors now, and provide assembly instruc-2574

tions for performing expensive operations specific to certain encryption2575

standards, typically AES, SHA and Galois/Counter Mode (GCM) for2576

block ciphers. Intel architectures have the most extensions, but ARM2577

architectures also have some.2578

• Secure cryptoprocessor70. These are separate, hardened hardware de-2579

65http://www.freedesktop.org/wiki/Software/systemd/kdbus/
66http://dbus.freedesktop.org/doc/dbus-specification.html#idp9446907251
67https://en.wikipedia.org/wiki/AES_instruction_set
68https://en.wikipedia.org/wiki/CLMUL_instruction_set
69http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0514g/index.html
70https://en.wikipedia.org/wiki/Secure_cryptoprocessor

72

http://www.freedesktop.org/wiki/Software/systemd/kdbus/
http://dbus.freedesktop.org/doc/dbus-specification.html#idp9446907251
https://en.wikipedia.org/wiki/AES_instruction_set
https://en.wikipedia.org/wiki/CLMUL_instruction_set
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0514g/index.html
https://en.wikipedia.org/wiki/Secure_cryptoprocessor
http://www.freedesktop.org/wiki/Software/systemd/kdbus/
http://dbus.freedesktop.org/doc/dbus-specification.html#idp9446907251
https://en.wikipedia.org/wiki/AES_instruction_set
https://en.wikipedia.org/wiki/CLMUL_instruction_set
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0514g/index.html
https://en.wikipedia.org/wiki/Secure_cryptoprocessor

vices which implement all encryption operations and some key storage2580

and handling within a tamper-proof chip. They are conceptually similar2581

to hardware video decoders — the CPU hands off encryption operations2582

to the coprocessor to happen in the background. They typically do not2583

have their own memory.2584

• Hardware security module71 (HSM). These are even more hardened se-2585

cure cryptoprocessors, which typically come with their own tamper-proof2586

memory and supporting circuitry, including tamper-proof power supply.2587

They handle all aspects of encryption, including all key storage and man-2588

agement (such that keys never leave the HSM).2589

Software encryption (without encryption acceleration instructions)2590

• Lowest encryption bandwidth.2591

• Highest attack surface area, as keys and in-progress encryption values have2592

to be stored in system memory, which can be read by an attacker with2593

physical access to the hardware.2594

• Certain versions of some cryptographic libraries are FIPS72-certified, but2595

not all. GnuTLS has been FIPS certified in various devices, but is not2596

routinely certified73. OpenSSL is not routinely certified, but provides a2597

OpenSSL FIPS Object Module which is certified74 as a drop-in replace-2598

ment for OpenSSL, provided that it’s used unmodified. The Linux kernel’s2599

IPsec support has been certified in Red Hat Enterprise Linux 6, but is not2600

routinely certified75.2601

• Cheaper than hardware.2602

• Provides the possibility of upgrading to use different encryption algorithms2603

in future.2604

• Possible to check the software implementation for backdoors, although2605

it’s a lot of work. Some of this work is being done by other users of open2606

source encryption software76.2607

Software encryption (with encryption acceleration instructions)2608

• Same advantages and disadvantages as software encryption without en-2609

cryption acceleration instructions, except that the use of acceleration gives2610

71https://en.wikipedia.org/wiki/Hardware_security_module
72https://en.wikipedia.org/wiki/FIPS_140-2
73http://www.gnutls.org/manual/html_node/Certification.html
74https://www.openssl.org/docs/fips.html
75https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/

6/html/Security_Guide/sect-Security_Guide-Federal_Standards_And_Regulations-
Federal_Information_Processing_Standard.html

76http://www.zdnet.com/article/ncc-group-to-audit-openssl-for-security-holes/

73

https://en.wikipedia.org/wiki/Hardware_security_module
https://en.wikipedia.org/wiki/FIPS_140-2
http://www.gnutls.org/manual/html_node/Certification.html
https://www.openssl.org/docs/fips.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Security_Guide/sect-Security_Guide-Federal_Standards_And_Regulations-Federal_Information_Processing_Standard.html
http://www.zdnet.com/article/ncc-group-to-audit-openssl-for-security-holes/
http://www.zdnet.com/article/ncc-group-to-audit-openssl-for-security-holes/
http://www.zdnet.com/article/ncc-group-to-audit-openssl-for-security-holes/
https://en.wikipedia.org/wiki/Hardware_security_module
https://en.wikipedia.org/wiki/FIPS_140-2
http://www.gnutls.org/manual/html_node/Certification.html
https://www.openssl.org/docs/fips.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Security_Guide/sect-Security_Guide-Federal_Standards_And_Regulations-Federal_Information_Processing_Standard.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Security_Guide/sect-Security_Guide-Federal_Standards_And_Regulations-Federal_Information_Processing_Standard.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Security_Guide/sect-Security_Guide-Federal_Standards_And_Regulations-Federal_Information_Processing_Standard.html
http://www.zdnet.com/article/ncc-group-to-audit-openssl-for-security-holes/

a higher encryption bandwidth (on the order of a factor of 10 improve-2611

ment).2612

• Same software interface as without acceleration.2613

• Both TLS and IPsec provide various cipher suite options, at least some of2614

which would benefit from hardware acceleration — both use AES-GCM772615

for data encryption, which benefits from AES instructions.2616

Secure cryptoprocessor2617

• Higher encryption bandwidth.2618

• Reduced attack surface area, as keys and in-progress encryption values are2619

handled within the encryption hardware, rather than in general memory,2620

and hence cannot be accessed by an attacker with physical access. Keys2621

may still leave the cryptoprocessor, which gives some attack surface.2622

• Typical secure cryptoprocessors have tamper evidence features in the hard-2623

ware.2624

• Typically hardware is FIPS-certified.2625

• More expensive than software.2626

• Provides a limited set of encryption algorithms, with no option to upgrade2627

them once it’s fixed in silicon.2628

• No possibility to audit the hardware implementation to check for back-2629

doors, so you have to trust that the hardware vendor has not been secretly2630

required to provide a backdoor by some government.2631

• Typical cryptoprocessors originate from mobile or embedded networking2632

hardware, both of which need to support TLS, and hence cryptoprocessors2633

typically have support for AES, DES, 3DES and SHA. This is sufficient2634

for accelerating the common cipher suites in TLS and IPsec.2635

• Have to be supported by the Linux kernel crypto API (/dev/crypto) in2636

order to be usable from software.2637

Hardware security module2638

• Highest encryption bandwidth.2639

• Minimal attack surface area, with keys never leaving the HSM.2640

• All hardware is tamper-proof and tamper-evident, and typically can de-2641

stroy stored keys automatically if tampering is detected.2642

• Hardware is almost universally FIPS-certified.2643

• Most expensive.2644

77https://en.wikipedia.org/wiki/Advanced_Encryption_Standard

74

https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard

• Provides a range of encryption algorithms, but with no option to upgrade2645

them.2646

• No possibility to audit the hardware implementation to check for back-2647

doors, so you have to trust that the hardware vendor has not been secretly2648

required to provide a backdoor by some government.2649

• Some modules can handle encryption of network streams transparently,2650

taking a plaintext network stream as input and handling all TLS or IPsec2651

operations for it with peers.2652

Conclusion2653

According to one evaluation78, using encryption acceleration instructions should2654

reduce the number of cycles per byte for AES encryption from 28 to 3.5. As-2655

suming the inter-domain connection is being used to transmit a HD video at2656

250kB·s�¹, that means encryption requires 7MHz of CPU compute without ac-2657

celeration, and 875kHz with it. Performing symmetric encryption on a data2658

stream doesn’t significantly increase the required memory bandwidth compared2659

to copying the stream around without encryption.2660

Hence, overall, if we assume a peak bandwidth requirement on the inter-domain2661

communications link on the order of 250kB·s�¹ then using software encryption2662

with acceleration instructions should give sufficient performance.2663

The hardware security (tamper-proofing) provided by a HSM is overkill for an2664

in-vehicle system, and is better suited to data centres or military equipment.2665

We recommend either using software encryption with acceleration, or a secure2666

cryptoprocessor, depending on the balance of the advantages and disadvantages2667

of the two for the particular OEM and vehicle. For the purposes of this design,2668

both options provide all features necessary for inter-domain communications.2669

Appendix: Audio and video streaming standards2670

There are several standards to enable reliable audio and video streaming between2671

various systems. These standards aim to address the synchronization problem2672

with different approaches.2673

• AES6779: The AES67 standard combines PTP and RTP using PTP clock2674

source signalling (RFC727380) to synchronize multiple streams with an2675

external clock, focusing on high-performance audio based on RTP/UDP.2676

• VSF TR-03: This is a technical recommendation from the Video Service2677

Forum81 (VFS). The TR-03 standard is similar to AES67 in terms of using2678

78https://en.wikipedia.org/wiki/AES_instruction_set#Performance
79https://en.wikipedia.org/wiki/AES67
80https://tools.ietf.org/html/rfc7273
81http://www.videoservicesforum.org/

75

https://en.wikipedia.org/wiki/AES_instruction_set#Performance
https://en.wikipedia.org/wiki/AES67
https://tools.ietf.org/html/rfc7273
http://www.videoservicesforum.org/
http://www.videoservicesforum.org/
http://www.videoservicesforum.org/
https://en.wikipedia.org/wiki/AES_instruction_set#Performance
https://en.wikipedia.org/wiki/AES67
https://tools.ietf.org/html/rfc7273
http://www.videoservicesforum.org/

PTP for clock synchronization, but it extends AES67 to cover other kinds2679

of uncompressed streams, including video and metadata.2680

• AVB82: The Audio Video Bridging (AVB) is a small extensions to standard2681

layer-2 MACs and bridges. An advantage of AVB is that the time syn-2682

chronization information is periodically exchanged through the network2683

so it provides great synchronization precision. However, it requires to im-2684

plement AVB for all of devices in the network because the device should2685

allocate a fraction of network bandwith for AVB traffic.2686

The following comparison table depicts the characteristics of the standards.2687

AES67 VSF TR-03 AVB
Time synchronization external (PTP) external (PTP) supported by the network
Kernel support not required not required required
Transport protocol RTP RTP RTP, HTTP(s), IEEE 1722
Related open source project GStreamer N/A OpenAvnu

Note that VFS TR-03 has no explicit open source implementation, but as it2688

combines RTP for transport and PTP for clock synchronization, it is generally2689

supported by GStreamer.2690

Appendix: Multiplexing RTP and RTCP2691

RTP requires the RTP Control Protocol (RTCP) to exchange control packets2692

and timing information such as latency and QoS. Usually RTP and RTCP use2693

two different channels on different network ports, but it is also possible to use2694

a single port for both protocols using the RFC 576183 standard, supported by2695

the GStreamer funnel element.2696

The following diagram shows how a RFC 5761 pipeline can be set up in2697

GStreamer:2698

/--------\ /---------\ /--------\ /---------------\ /-2699

---------\2700

| audio | === | audio | === | rtpbin | = rtp = | rtp payloader | = rtp = | | /-2701

---------\2702

| source | | convert | | | \---------------2703

/ | funnel | === | udp sink |2704

\--------/ \---------/ | | =========================== rtcp = | | \-2705

---------/2706

\--------/ \----------/2707

82https://en.wikipedia.org/wiki/Audio_Video_Bridging
83https://tools.ietf.org/html/rfc5761

76

https://en.wikipedia.org/wiki/Audio_Video_Bridging
https://tools.ietf.org/html/rfc5761
https://en.wikipedia.org/wiki/Audio_Video_Bridging
https://tools.ietf.org/html/rfc5761

Appendix: Audio and video decoding2708

As a system which handles a lot of multimedia, deciding where to perform audio2709

and video decoding is important. There are two major considerations:2710

• minimising the amount of raw communications bandwidth which is needed2711

to transmit audio or video data between the domains; and2712

• ensuring that an exploit does not give access to arbitrary memory from2713

either domain (especially not the automotive domain).2714

The discussion below refers to video encoding and decoding, but the same con-2715

siderations apply equally well to audio.2716

Software encoding is a large CPU burden, and introduces quality loss into2717

videos — so decoding and re-encoding videos in one domain to check their2718

well-formedness is not a viable option. If decoding is being performed, the de-2719

coded output might as well be used in that form, rather than being re-encoded2720

to be sent to the other domain.2721

In order to avoid spending a lot of CPU time and CPU–memory bandwidth on2722

video decoding, it should be performed by hardware. However, this hardware2723

does not necessarily have to be in the domain where the encoded video origi-2724

nates. For example, it is entirely possible for videos to be sent from the CE to2725

be decoded in the AD.2726

The original designs which were discussed in combination with the GPU video2727

sharing design planned to create a GStreamer plugin in the CE which treats the2728

AD as a hardware video decoder which accepts encoded video, decodes it, and2729

returns a handle which can be passed to the GL scene being output by the CE,2730

via a GL extension (similar to EXT_image_dma_buf_import84). This is the2731

same model as used for ‘normal’ hardware decoders, and ensures that decoded2732

video data remains within the AD, rather than being sent back over the inter-2733

domain communications link (which would incur a very high bandwidth cost,2734

which for uncompressed 1080p video in YUV 422 format at 60fps amounts to2735

16 bits∕pixel × (1920 × 1080) pixels∕frame × 60 frames/s = 1898 Mbit∕s = 2372736

MB∕s).2737

Regarding security, a hardware decoder is typically a DMA85-capable peripheral2738

which means that, unless constrained by an IOMMU86, it can access all areas2739

of physical memory. The threat here is that a malicious or corrupt video could2740

trigger the decoder into reading or writing to areas of memory which it shouldn’t,2741

which could allow it to overwrite parts of the (hypervisor) operating system or2742

running applications. This concern exists regardless of which domain is driving2743

the decoder. We highly recommend that hardware is chosen which uses an2744

IOMMU to restrict the access a video decoder has to physical memory.2745

84https://www.khronos.org/registry/egl/extensions/EXT/EGL_EXT_image_dma_buf_
import.txt

85https://en.wikipedia.org/wiki/Direct_memory_access
86https://en.wikipedia.org/wiki/Input-output_memory_management_unit

77

https://www.khronos.org/registry/egl/extensions/EXT/EGL_EXT_image_dma_buf_import.txt
https://en.wikipedia.org/wiki/Direct_memory_access
https://en.wikipedia.org/wiki/Input-output_memory_management_unit
https://www.khronos.org/registry/egl/extensions/EXT/EGL_EXT_image_dma_buf_import.txt
https://www.khronos.org/registry/egl/extensions/EXT/EGL_EXT_image_dma_buf_import.txt
https://en.wikipedia.org/wiki/Direct_memory_access
https://en.wikipedia.org/wiki/Input-output_memory_management_unit

Note that the same security threat applies to the GPU, which has direct access2746

to physical memory (if shared with the CPU — some systems use dedicated2747

memory for the GPU, in which case the issue isn’t present). GPUs have a much2748

larger attack surface, as they have to handle complex GL commands which are2749

provided from untrusted sources, such as WebGL.2750

We recommend investigating the hardening and security applied to video de-2751

coders on the particular hardware platforms in use, but there is not much which2752

can be done by software to improve their security if it is lacking — the perfor-2753

mance cost is too high.2754

Memory bandwith usage on the i.MX6 Sabrelite2755

This section refers to some benchmarks evaluating the available memory band-2756

width on the i.MX6 Sabrelite platform used in the reference hardware for Aper-2757

tis. This data is very system dependent, but the order of magnitude should2758

provide a general guide for evaluating approaches.2759

The iMX6 memory bandwith usage benchmark87 describes some tools that can2760

be used to measure how memory is used, and reports that a 1080p @ 60fps2761

loopback pipline88 using GStreamer requires up to 1744.46 MB/s of memory2762

bandwidth.2763

Another useful benchmark is the one evaluating the cost of memory copies892764

done with the memcpy() function. The effective usable memory bandwidth mea-2765

sured with this test amounts to roughly 800 MB/s.2766

Security Vulnerabilities in GStreamer2767

To list vulnerabilities by type we can refer to the statistics available from the2768

CVE90 data source.2769

According to the CVE Details91 website, a third party that provides summaries2770

of CVE vulnerabilities, GStreamer had total 17 vulnerabilities92 since 2009.2771

Examining the DoS and Code Execution vulnerability types, the statistics2772

showed different characteristics for demuxers and decoders. There have been2773

12 DoS vulnerabilities affecting demuxers, but only one issue could lead to2774

Code Execution. For decoders, all the the 5 DoS issues which were found can2775

be escalated to Code Execution as well.2776

87https://developer.ridgerun.com/wiki/index.php?title=IMX6_Memory_Bandwidth_
usage

88https://developer.ridgerun.com/wiki/index.php?title=IMX6_Memory_Bandwidth_
usage#1080p60_loopback

89https://community.nxp.com/thread/309197
90http://cve.mitre.org/
91https://www.cvedetails.com
92https://www.cvedetails.com/vendor/9481/Gstreamer.html

78

https://developer.ridgerun.com/wiki/index.php?title=IMX6_Memory_Bandwidth_usage
https://developer.ridgerun.com/wiki/index.php?title=IMX6_Memory_Bandwidth_usage#1080p60_loopback
https://developer.ridgerun.com/wiki/index.php?title=IMX6_Memory_Bandwidth_usage#1080p60_loopback
https://developer.ridgerun.com/wiki/index.php?title=IMX6_Memory_Bandwidth_usage#1080p60_loopback
https://community.nxp.com/thread/309197
http://cve.mitre.org/
https://www.cvedetails.com
https://www.cvedetails.com/vendor/9481/Gstreamer.html
https://developer.ridgerun.com/wiki/index.php?title=IMX6_Memory_Bandwidth_usage
https://developer.ridgerun.com/wiki/index.php?title=IMX6_Memory_Bandwidth_usage
https://developer.ridgerun.com/wiki/index.php?title=IMX6_Memory_Bandwidth_usage#1080p60_loopback
https://developer.ridgerun.com/wiki/index.php?title=IMX6_Memory_Bandwidth_usage#1080p60_loopback
https://community.nxp.com/thread/309197
http://cve.mitre.org/
https://www.cvedetails.com
https://www.cvedetails.com/vendor/9481/Gstreamer.html

This report indicates that demuxers might have a smaller attack surface than de-2777

coders from the arbitrary code execution viewpoint. However, it is also possible2778

to have a security hole similar to Video or audio decoder bugs.2779

Both demuxing and possibly even decoding in the CE can help to mitigate the2780

described attacks. If the CE is responsible of demuxing the AD does not need2781

to deal with content detection and container formats, and the CE provides a2782

kind of partial verification of the stream even without decoding it.2783

Decoding in the CE poses some challenges in terms of bandwidth, as the amount2784

of data generated by fully decoded video streams is very high. It’s not going to2785

be a viable solution on ethernet-based setups, and advanced zero-copy mecha-2786

nisms to transfer frames are recommended on single board setups (virtualised2787

or container-based).2788

79

	Terminology and concepts
	Automotive domain
	Consumer-electronics domain
	Connectivity domain
	Trusted path
	Control stream
	Data stream
	Traffic control

	Use cases
	Standalone setup
	Basic virtualised setup
	Linux container setup
	Separate CPUs setup
	Separate boards setup
	Separate boards setup with other devices
	Multiple CE domains setup
	Touchscreen events
	Wi-Fi access
	Bluetooth access
	Audio transfer
	Video decoding
	Streaming media
	Downloads of firmware updates
	Offline and online map data
	Phonebook integration
	Tinkering vehicle owner on the network
	Tinkering vehicle owner on the boards
	Support multiple AD operating systems
	Before-market upgrades
	After-market upgrades
	Testability
	Malicious CE
	Malicious CD
	After-market upgrade of a domain
	Power cycle independence of domains (CE down)
	Power cycle independence of domains (AD down, single screen)
	Power cycle independence of domains (AD down, multiple screens)
	Temporary communications problem
	New version of AD software
	New version of AD interfaces
	Unsupported AD interfaces
	Contacts sharing
	Protocol compatibility
	Navigation system
	Marshalling resource usage
	Feedback for malicious applications
	Compromised CE with delayed fix
	Denial of service through flooding
	Malicious CE UI
	Plug-and-play CE device
	Connecting an SDK to a development vehicle

	Security model
	Attackers
	Security domains
	Security model

	Non-use-cases
	Production CE domain used in multiple configurations

	Requirements
	Separated transport layer
	Message integrity and confidentiality in transport layer
	Reliability and error checking in transport layer
	Mutual authentication between domains
	Separate authentication for developer and production mode devices
	Individually addressed domains
	Traffic control for latency
	Traffic control for bandwidth
	Traffic control for frequency
	Separation of control and data streams
	No untrusted access to AD hardware
	Trusted path for users to update the CE operating system
	Safety limits on AD APIs
	Rate limiting on control messages
	Ignore unrecognised messages
	Portable transport layer
	Support push mode and pull mode communications
	OEM AD integration API
	Flexibility in OEM AD integration API
	Inflexibility in OEM AD integration API
	Service discovery
	Stability in inter-domain communications protocol
	Testability of protocols
	Testability of protocol parsers and writers
	Testability of processes
	CE system services separated from transport layer
	No dependency on CE specific hardware
	Immediate error response if service on peer is unavailable
	Immediate error response if peer is unavailable
	Timeout error response if peer does not respond
	All inter-domain communications APIs are asynchronous
	Reconnect to peer as soon as it is available
	External domain watchdog
	Reporting system for malicious applications
	Ability to disable the consumer–electronics domain
	Tamper evidence
	No global keys in vehicles

	Existing inter-domain communication systems
	Approach
	Overall architecture
	Security domains
	Protocol design
	Traffic control
	Protocol library and inter-domain services
	Non Linux-based domains
	Service discovery
	Automotive domain export layer
	Consumer-electronics domain adapter layer
	Interaction of the export and adapter layers
	Flow for a given SDK API call
	Trusted path to the AD
	Developer mode
	Mock SDK implementation
	Debuggability
	External watchdog
	Tamper evidence and hardware encryption
	Disabling the CE domain
	Reporting malicious applications
	Suggested roadmap
	Requirements

	Open questions
	Summary of recommendations
	Appendix: D-Bus components and licensing
	Licensing

	Appendix: D-Bus performance
	Appendix: Software versus hardware encryption
	Software encryption (without encryption acceleration instructions)
	Software encryption (with encryption acceleration instructions)
	Secure cryptoprocessor
	Hardware security module
	Conclusion

	Appendix: Audio and video streaming standards
	Appendix: Multiplexing RTP and RTCP
	Appendix: Audio and video decoding
	Memory bandwith usage on the i.MX6 Sabrelite
	Security Vulnerabilities in GStreamer

