
Interface discovery

Contents1

Use cases . 22

In other systems . 33

Security considerations . 34

Restricting who can advertise a given interface 35

Communication between consumers and implementors 36

Visibility of applications to other applications 47

Recommendation . 48

Selecting a preferred implementation 59

Enabling/disabling providers . 610

Restricting who can advertise a given interface 611

Communication between consumers and implementors 712

Visibility of applications to other applications 713

Various features on Apertis require a way to discover the applications and/or14

agents that implement a particular set of functionality. We refer to the “API15

contract” for this set of functionality as an interface.16

Use cases17

• A global search user interface1 requires a list of agents that can act as18

“Auxiliary Sources” (see §6.2 in the Global Search design document). For19

example, a Spotify client might register itself as a search provider so that20

searching for a term in a global search will find artists or songs matching21

that term.22

• An application that will display a Sharing2 menu similar to the one in23

Android requires a list of applications with which files or data can be24

shared.25

• A navigation app, potentially from an app-store, obtains points of inter-26

est3 from a number of providers, again potentially from an app-store. In27

a “pull” model, the navigation app would consume the interface “points-28

of-interest provider” by sending queries to the implementors and getting29

results back, and the points-of-interest providers would implement that30

interface. Conversely, in a “push” model, the navigation app could im-31

plement the interface “points-of-interest sink”, and the points-of-interest32

providers could consume that interface by sending points of interest to33

each sink.34

• If more than one navigation app is installed (for example because an Aper-35

tis system includes the OEM’s own simple navigation solution, but it is36

possible to install premium navigation software from the app-store), a set-37

tings user interface to select the preferred navigation app might need to38

list all the possible navigation apps.39

1/images/apertis-global-search-design-0.3.2.pdf
2https://martyn.pages.apertis.org/apertis-website/concepts/sharing/
3https://martyn.pages.apertis.org/apertis-website/concepts/points_of_interest/

2

https://martyn.pages.apertis.org/apertis-website/concepts/sharing/
https://martyn.pages.apertis.org/apertis-website/concepts/points_of_interest/
https://martyn.pages.apertis.org/apertis-website/concepts/points_of_interest/
https://martyn.pages.apertis.org/apertis-website/concepts/points_of_interest/
/images/apertis-global-search-design-0.3.2.pdf
https://martyn.pages.apertis.org/apertis-website/concepts/sharing/
https://martyn.pages.apertis.org/apertis-website/concepts/points_of_interest/

• Interface discovery could potentially be used with the interface “is the40

preferred navigation app” to start the navigation app on-demand. If it is,41

it must be possible to mark one as preferred.42

• A navigation app could have a preferences dialog in which points of inter-43

est4 providers can be selected or deselected. It should not display points of44

interest from deselected providers, and should not waste system resources45

on receiving points of interest from those providers. However, if another46

application also consumes points of interest, disabling a points of interest47

provider in the navigation app should not prevent it from being used by48

the other application.49

• The platform could have a preferences dialog in which points of interest550

providers can be selected or deselected. If a POI provider is deselected51

here, POI consumers such as the navigation app should behave as though52

the deselected provider had not been installed at all.53

In other systems54

GNOME Shell’s search provider API6 relies on applications registering their55

support for the search provider “interface” by installing files in /usr/share/gnome-56

shell/search-providers. This is not ideally suited to a platform like Apertis with57

a strong division between the “platform” and “app bundle” layers, and does not58

generalize trivially (each interface would have to define its own location in which59

to place metadata files).60

The freedesktop.org Desktop Entry specification7 shared by GNOME, KDE and61

other open source desktop environments uses .desktop metadata files to store62

metadata about applications. It defines an Interfaces key8 whose value is a63

list of syntactically valid D-Bus interface names9. Each interface name may64

represent either a D-Bus interface, or any other “API contract”; there is no65

requirement that D-Bus is actually used.66

Security considerations67

Restricting who can advertise a given interface68

If arbitrary ISVs10 can publish app-bundles that advertise arbitrary interfaces,69

there is a risk that consumers of those interfaces would have an inappropriate70

level of trust in those app-bundles by assuming that only their own app-bundles71

4https://martyn.pages.apertis.org/apertis-website/concepts/points_of_interest/
5https://martyn.pages.apertis.org/apertis-website/concepts/points_of_interest/
6https://git.gnome.org/browse/gnome-shell/tree/js/ui/remoteSearch.js
7http://standards.freedesktop.org/desktop-entry-spec/latest/
8http://standards.freedesktop.org/desktop-entry-spec/desktop-entry-spec-latest.html#

interfaces
9http://dbus.freedesktop.org/doc/dbus-specification.html#message-protocol-names-

interface
10https://en.wikipedia.org/wiki/Independent_software_vendor

3

https://martyn.pages.apertis.org/apertis-website/concepts/points_of_interest/
https://martyn.pages.apertis.org/apertis-website/concepts/points_of_interest/
https://martyn.pages.apertis.org/apertis-website/concepts/points_of_interest/
https://martyn.pages.apertis.org/apertis-website/concepts/points_of_interest/
https://git.gnome.org/browse/gnome-shell/tree/js/ui/remoteSearch.js
http://standards.freedesktop.org/desktop-entry-spec/latest/
http://standards.freedesktop.org/desktop-entry-spec/desktop-entry-spec-latest.html#interfaces
http://dbus.freedesktop.org/doc/dbus-specification.html#message-protocol-names-interface
https://en.wikipedia.org/wiki/Independent_software_vendor
https://martyn.pages.apertis.org/apertis-website/concepts/points_of_interest/
https://martyn.pages.apertis.org/apertis-website/concepts/points_of_interest/
https://git.gnome.org/browse/gnome-shell/tree/js/ui/remoteSearch.js
http://standards.freedesktop.org/desktop-entry-spec/latest/
http://standards.freedesktop.org/desktop-entry-spec/desktop-entry-spec-latest.html#interfaces
http://standards.freedesktop.org/desktop-entry-spec/desktop-entry-spec-latest.html#interfaces
http://dbus.freedesktop.org/doc/dbus-specification.html#message-protocol-names-interface
http://dbus.freedesktop.org/doc/dbus-specification.html#message-protocol-names-interface
https://en.wikipedia.org/wiki/Independent_software_vendor

can advertise “their” interfaces, for example “leaking” private information to72

them.73

Communication between consumers and implementors74

If a particular interface involves direct communication between a consumer and75

an implementor, then discovery is not sufficient: it is also necessary to ensure76

that the security model allows the consumer and the implementor to communi-77

cate. Conversely, if a particular interface forces all communication between a78

consumer and an implementor through a trusted intermediary such as Didcot,79

then it is necessary to ensure that the security model allows both the consumer80

and the implementor to communicate with the trusted intermediary, and that81

the trusted intermediary is able to determine that forwarding data between82

consumer and implementor will not violate the security model.83

The desired security model for this interface is that some subset of interfaces are84

considered to be public interfaces. Trusted platform components may list the85

implementors of any interface, public or not, and may initiate communication86

with those implementors. Store applications may list the implementors of public87

interfaces, and may initiate communication with the implementors of public88

interfaces, but cannot do the same for non-public interfaces.89

Visibility of applications to other applications90

Our security model does not consider it to be acceptable for app-bundles to91

be able to enumerate other app-bundles’ entry points (with the exception that92

public interfaces may be enumerated). This implies that the implementation93

of get_implementations() (and the objects that it returns) must be done via94

IPC (most likely D-Bus) to a trusted service such as Didcot or Canterbury,95

which can read the .desktop files in XDG_DATA_DIRS/applications and apply96

appropriate filtering for the caller’s limited view of the system.97

Recommendation98

For each application or agent (entry point) in an application bundle, we rec-99

ommend that a freedesktop.org .desktop file is provided in a standard location100

such as /var/lib/apertis_extensions/applications by installing the application101

bundle. Possible implementations of this:102

• The store publication process could verify that the contents of the provided103

.desktop file are appropriate for the application’s manifest.104

• The store publication process could generate a .desktop file from the appli-105

cation’s manifest, with no control from the application author, other than106

to the extent that they can control the manifest and still have it approved107

by the app-store curator.108

• The application manager could generate a .desktop file from the applica-109

tion’s manifest during installation.110

4

The resulting .desktop file should contain the standardized Interfaces key as111

described above.112

This information should be made available to API users via a C API re-113

sembling GLib’s GAppInfo11 and GDesktopAppInfo12 APIs, in particular114

g_desktop_app_info_get_implementations()13. However, we recommend an115

asynchronous version of that API in order to support the implementation being116

via D-Bus. Specifically, it should look something like this, with Namespace117

replaced by some suitable API namespace such as Didcot:118

void namespace_app_registry_get_implementations_async (NamespaceAppReg-119

istry *self, const gchar *interface_name, GCancellable *can-120

cellable, GAsyncReadyCallback *callback, gpointer user_data);121

/* Returns: (element-type GAppInfo) (transfer full): */ GList *names-122

pace_app_registry_get_implementations_finish (NamespaceAppRegistry *self,123

GAsyncResult *result, GError **error);124

where the result is a list of objects that implement the GAppInfo GInterface.125

If there is an order of preference, the most-preferred should come first. If there126

is no particular preference order, the implementation should use a predictable127

order, such as ordering by most-recently-used, most-recently-installed or alpha-128

betically.129

Either this could be implemented in terms of a D-Bus API, or it could have a130

D-Bus API based on it for access by non-C applications, for example:131

/* returns a list of pairs (desktop file ID, text of .desktop file) */132

org.apertis.Namespace1.GetImplementations(s interface_name) → a(ss)133

For interfaces (API contracts) that already have a system-wide registration134

mechanism, such as Telepathy connection managers, D-Bus session services135

and systemd user services, we recommend adopting the existing mechanism136

instead, using appropriate subdirectories of /var/lib/apertis_extensions where137

necessary.138

Selecting a preferred implementation139

Some of the possible use-cases for interfaces benefit from the concept of a pre-140

ferred implementation: for example, a navigation button should launch the pre-141

ferred (default) navigation application, and if points-of-interest providers have142

a “push” model, they should not start non-preferred navigation applications in143

order to push points of interest into those implementations.144

For other use-cases, having a preferred implementation is unnecessary: for ex-145

ample, for a Sharing menu, global search, or points-of-interest providers with146

11https://developer.gnome.org/gio/stable/GAppInfo.html
12https://developer.gnome.org/gio/stable/gio-Desktop-file-based-GAppInfo.html
13https://developer.gnome.org/gio/stable/gio-Desktop-file-based-GAppInfo.html#g-

desktop-app-info-get-implementations

5

https://developer.gnome.org/gio/stable/GAppInfo.html
https://developer.gnome.org/gio/stable/gio-Desktop-file-based-GAppInfo.html
https://developer.gnome.org/gio/stable/gio-Desktop-file-based-GAppInfo.html#g-desktop-app-info-get-implementations
https://developer.gnome.org/gio/stable/GAppInfo.html
https://developer.gnome.org/gio/stable/gio-Desktop-file-based-GAppInfo.html
https://developer.gnome.org/gio/stable/gio-Desktop-file-based-GAppInfo.html#g-desktop-app-info-get-implementations
https://developer.gnome.org/gio/stable/gio-Desktop-file-based-GAppInfo.html#g-desktop-app-info-get-implementations

a “pull” model, the natural design is to query all known implementations in147

parallel, possibly excluding some that have been disabled.148

We recommend addressing the question of a default/preferred implementation149

on a case-by-case basis (for example by introducing a platform setting for each150

interface that needs a preferred choice), and only developing a more general151

solution if experience demonstrates that it is needed in practice.152

For example, a preferred navigation application could be selected with an API153

like154

void namespace_app_registry_get_default_navigation_implementation_async (Names-155

paceAppRegistry *self, GCancellable *cancellable, GAsyn-156

cReadyCallback *callback, gpointer user_data); GAppInfo *names-157

pace_app_registry_get_default_navigation_implementation_finish (NamespaceAp-158

pRegistry *self, GAsyncResult *result, GError **error);159

if required.160

The storage of preferred implementations should be considered to be an imple-161

mentation detail of the platform component that implements this platform API.162

For example, it could have a GSetting for each well-known interface, whose value163

is the string app-ID (D-Bus well-known name) of the preferred entry-point, or164

an ordered list of preferred entry-points with the most-preferred first.165

Enabling/disabling providers166

If a provider is disabled system-wide, the platform component that implements167

interface discovery (for example Didcot) must behave as though it was not168

installed at all when answering queries from other components. The storage of169

enabled/disabled implementations can be considered to be an implementation170

detail of that component: for example it could store a string-list of disabled app171

IDs in GSettings. Uninstalling a provider should probably remove it from that172

list, so that reinstalling the provider automatically enables it.173

If a provider is disabled for a particular consumer, we recommend that the con-174

sumer stores its own string-list of disabled app IDs, and filters the results of175

queries on the client-side, encapsulated in a library. This probably only makes176

sense for interfaces where the consumer will use all non-disabled implementa-177

tions.178

Restricting who can advertise a given interface179

We recommend that interfaces advertised by a provider should be restricted by180

app-store curators, as follows:181

• each ISV14 that will publish apps on the app-store registers one or182

more reversed-DNS prefixes with the app-store curator as part of their183

14https://en.wikipedia.org/wiki/Independent_software_vendor

6

https://en.wikipedia.org/wiki/Independent_software_vendor
https://en.wikipedia.org/wiki/Independent_software_vendor

app-developer account (for example, Collabora Ltd.15 might register184

com.collabora and/or uk.co.collabora)185

• the app-store curator verifies the ISV’s ownership of the relevant domain186

names before accepting uploads from that ISV187

• app-bundles published by the ISV may implement interface names in the188

namespace of those reversed-DNS prefixes without necessarily triggering189

extensive checking by the app-store curator (for example, Collabora Ltd.190

could publish an app-bundle implementing com.collabora.MyInterface)191

• a whitelist of known-“safe” interface names in shared namespaces such192

as org.apertis, org.freedesktop and org.gnome could also be implemented193

without necessarily triggering extra checks by the app-store curator (for194

example, an org.apertis.SharingProvider interface which adds the app to195

the Sharing menu might be considered to be “safe” for anyone to imple-196

ment)197

• all other interface names would be “red flags” leading to rejection or ad-198

ditional checking by the app-store curator199

This implies that cooperating ISVs cannot invent their own interfaces without200

app-store curators’ involvement.201

It is important to note that if the platform initially has this policy, it cannot202

be relaxed to “anyone may implement any interface” later. If it was, ISVs203

writing previously-correct code would potentially become susceptible to cross-204

app resource access attacks (for example, if the ISV owning example.net had205

assumed that every implementation of net.example.MyInterface was necessarily206

trusted code).207

Communication between consumers and implementors208

App-bundles that implement of public interfaces should receive AppArmor pro-209

files allowing them to receive D-Bus method calls from anywhere.210

App-bundles that do not implement public interfaces should receive AppArmor211

profiles that allow D-Bus method calls from platform services, and from other212

processes from the same app-bundle, but deny other D-Bus method calls.213

Visibility of applications to other applications214

App-bundles’ AppArmor profiles should not give them read access to215

/var/lib/apertis_extensions/applications or to other app-bundles’ manifests.216

The implementation of the interface discovery should be done via D-Bus. The217

service providing this D-Bus API (for example Didcot) should be a platform218

component. It is considered to be a trusted component for the purposes of219

security between app-bundles: it must reveal public interface implementations220

to other app-bundles, but must only reveal non-public interface implementations221

to trusted platform components.222

15https://www.collabora.com/

7

https://www.collabora.com/
https://www.collabora.com/

	Use cases
	In other systems
	Security considerations
	Restricting who can advertise a given interface
	Communication between consumers and implementors
	Visibility of applications to other applications

	Recommendation
	Selecting a preferred implementation
	Enabling/disabling providers
	Restricting who can advertise a given interface
	Communication between consumers and implementors
	Visibility of applications to other applications

