
Web portal caching

Contents1

How HTTP caching works 22

Caching in WebKit 33

Client/Server implementation strategies 44

Application cache . 45

Custom HTTP application caching server running locally 56

Separatedly-maintained locally accessible copy of the portal contents . 57

The purpose of this document is to evaluate the available strategies to implement8

a custom, single-purpose browser restricted to a single portal website that hosts9

several HTML/JS applications.10

The portal and the visited applications should be available even if no Internet11

connection is available.12

If a connection to the Internet is available, the locally-stored contents should be13

refreshed.14

Locally-stored copies should be used to speed up loading even when the connec-15

tion to the Internet is available.16

The portal and the applications store all their runtime data using the local-17

Storage1 or IndexedDB2 mechanisms and how that is synchronized is out of the18

scope of this document, which instead focuses on how to manage static assets.19

How HTTP caching works20

Caching is a very important and complex feature in modern web engines to21

improve page load time and reduce bandwidth consumption. RFC72343 defines22

the mechanisms that control caching in the HTTP protocol regardless of its23

transport or serialization, which means that the same mechanisms apply to24

HTTPS and HTTP2 in the same way.25

HTTP has provisions for several use cases:26

• preventing highly dynamic resources from being cached27

• letting clients know for how long is acceptable to use cached data28

• optimizing validation of cached entries to skip the download of the bodyi29

if the copy on the client still matches the one on the server30

• informing clients about resources that can be safely used even if stale when31

no connection is available and which ones must return an error32

1https://html.spec.whatwg.org/multipage/webstorage.html
2https://www.w3.org/TR/IndexedDB/
3https://tools.ietf.org/html/rfc7234

2

https://html.spec.whatwg.org/multipage/webstorage.html
https://html.spec.whatwg.org/multipage/webstorage.html
https://html.spec.whatwg.org/multipage/webstorage.html
https://www.w3.org/TR/IndexedDB/
https://tools.ietf.org/html/rfc7234
https://html.spec.whatwg.org/multipage/webstorage.html
https://www.w3.org/TR/IndexedDB/
https://tools.ietf.org/html/rfc7234

Caching is generally available only for the GET method and is controlled by the33

server for every single HTTP resource by adding the Cache-control header to its34

responses: this instruct the client (the web engine) on the ways it can store the35

retrieved contents and re-use them to skip the download on subsequent requests.36

One of the most important uses of the Cache-control header is to disable any kind37

of caching on highly dynamic generated resources, by specifying the no-store38

value.39

The public and private directives instruct clients that the resource can be stored40

in the local cache (public also allows for caching in intermediate proxy servers,41

a feature which is progressively getting obsolete as it conflicts with the confiden-42

tiality requirements of HTTPS/TLS).43

The Expire header and the max-age directive let the server instruct the client for44

how long it can consider the cached resource valid. The client can completely45

skip any network access as long as the cached resource is “fresh”, otherwise it46

has to validate it against the server, but this does not mean that a complete47

re-download is always needed: using conditional requests, that is using the If-48

Modified-Since or If-None-Match headers to pass the values of the Last-Modified49

or ETag headers from the previous request, the dowload of the body is skipped50

if the values match and only headers will be transferred with a 304 Not Modified51

response.52

The HTML5 specification recently introduced the concept of application cache453

which caters for an additional, higher-level use case: pro-actively downloading54

all the resources needed by an HTML application for offline usage.55

This works by adding a manifest attribute to the <html> element of the main56

application page, and from there indicate the URL of a specially formatted57

resource that lists all the URLs the client needs to pro-actively retrieve in order58

to be able to run the application correctly when offline. The caching model59

used by this specification is somewhat less refined than the one used by the60

HTTP specification and for this reason it needs some special attention on how61

to ensure that the application is properly refreshed when changes are made on62

the server.63

The more complex and powerful Service Workers5 specification is meant to re-64

place this, but it is not supported yet by all modern browsers (works in Firefox65

and Chrome, WebKit and Edge don’t support it yet). The specification has66

been stable for more than a year, despite not being finalized yet. The WebKit67

team has not yet shown a clear interest in implementing it, which may be the68

reason why the specification is still in the current status.69

4https://html.spec.whatwg.org/multipage/browsers.html#offline
5https://www.w3.org/TR/service-workers/

3

https://html.spec.whatwg.org/multipage/browsers.html#offline
https://www.w3.org/TR/service-workers/
https://html.spec.whatwg.org/multipage/browsers.html#offline
https://www.w3.org/TR/service-workers/

Caching in WebKit70

WebKit currently has several caches:71

• a non-persistent, in-memory cache of rendered pages which is set to 272

pages if the total RAM is bigger or equal to 512MB73

• a non-persistent, in-memory decoded/parsed object cache6, set to 128MB74

if the total RAM is bigger or equal to 2GB and progressively lowered as75

the amount of total RAM decreases76

• a persistent, on-disk resources cache7 of 500MB if there are more than77

16GB free on the disk, progressively scaling down to 50MB if less than78

1GB is available.79

Those sizes are computed automatically but they can be customized to fit any80

requirements.81

When a new resource needs to be cached WebKit makes sure that the upper82

bound is respected and frees older cache entries in a LRU pattern to make83

enough room to accomodate the resource which is about to be downloaded.84

Downloaded contents to be stored in the on-disk URL cache are directly saved85

in the filesystem, using the normal buffering that the kernel does for every86

application to improve performance and minimize eMMC wear. This is further87

minimized by the fact that only contents marked for caching by the server using88

the appropriate HTTP headers will be cached: highly dynamic contents like89

news tickers won’t be marked as cacheable so they won’t impact the eMMC at90

all.91

The application cache is handled separatedly and it is unlimited by default, but92

this is a setting that can be changed. All the resources are stored in a SQLite93

database as data blobs, except for audio and video resources where the only the94

metadata is stored in the database and the contents are stored separatedly.95

To use the application cache effectively in WebKitGTK+ some implementation96

work would be required to limit the maximum size as the WebKit core hooks97

are currently not used by the WebKitGTK+ port, and the WebKit core itself98

does not currently provide any expiration policy for the cached contents.99

Client/Server implementation strategies100

Multiple strategies can be used to implement the previously defined system and101

affect the design of the client and of the contents offered by the portal server.102

6https://trac.webkit.org/browser/webkit/releases/WebKitGTK/webkit-2.0/Source/
WebKit2/Shared/CacheModel.cpp#L83

7https://trac.webkit.org/browser/webkit/releases/WebKitGTK/webkit-2.0/Source/
WebKit2/Shared/CacheModel.cpp#L158

4

https://trac.webkit.org/browser/webkit/releases/WebKitGTK/webkit-2.0/Source/WebKit2/Shared/CacheModel.cpp#L83
https://trac.webkit.org/browser/webkit/releases/WebKitGTK/webkit-2.0/Source/WebKit2/Shared/CacheModel.cpp#L158
https://trac.webkit.org/browser/webkit/releases/WebKitGTK/webkit-2.0/Source/WebKit2/Shared/CacheModel.cpp#L83
https://trac.webkit.org/browser/webkit/releases/WebKitGTK/webkit-2.0/Source/WebKit2/Shared/CacheModel.cpp#L83
https://trac.webkit.org/browser/webkit/releases/WebKitGTK/webkit-2.0/Source/WebKit2/Shared/CacheModel.cpp#L158
https://trac.webkit.org/browser/webkit/releases/WebKitGTK/webkit-2.0/Source/WebKit2/Shared/CacheModel.cpp#L158

Application cache103

The main HTML page of the portal links to an appcache manifest that instruct104

the browser to pro-actively fetch all the needed resources.105

All subsequent accesses to the portal will be served from the cached copy, re-106

gardless of the availability of an Internet connection.107

If the portal is accessed when an Internet connection is available, the browser will108

retrieve the appcache manifest from the server in the background and check for109

modifications: if a new version is detected the portal resources will be refreshed110

in the background and will be used for subsequent accesses to the portal.111

Each application will have its own appcache manifest, so it will be locally cached112

after the first visit.113

To ensure that the portal is available on first-boot even if no Internet connection114

is available, during the process of generating the system image the browser will115

be launched using a special mode that will cause it to connect to the portal, pop-116

ulate the application cache and exit as soon as the ApplicationCache::updateready117

event is fired. An ad-hoc program using WebKit may be used instead of adding118

a special mode to the browser.119

This is the simplest and most portable approach on the client side, as all the120

caching logic is provided by the portal server using standard W3C mechanisms.121

Custom HTTP application caching server running locally122

Alternatively, the browser can be instructed to connect to a custom HTTP proxy123

server running locally instead of directly to the portal server.124

Since TLS authentication cannot work appropriately through proxy servers, it is125

taken care by the proxy server itself, with the browser talking to the local proxy126

over unencrypted HTTP and the proxy converting HTTP requests to HTTPS.127

This means that unencrypted communications will only happen locally between128

trusted components, while all the network traffic will be encrypted. Just like for129

any other HTTP error, the proxy can return error pages to the browser in case130

of TLS error (for instance, if the server certificate is expired) or return cached131

contents if available.132

The custom proxy is then responsible for connecting to the portal server and133

retrieving updated contents from there, locally caching it with any kind of expiry134

and refresh policy desired, and processing cached resources when needed, for135

instance by rewriting links from HTTPS to HTTP.136

The browser needs to be configured to reduce its own caching to a minimum,137

since the smart proxy already does it.138

During the manifactuing process the proxy cache will be preloaded with the139

resources hosted by the portal server.140

5

This is the most flexible approach.141

Separatedly-maintained locally accessible copy of the portal142

contents143

Instead of having a locally running custom HTTP caching proxy, the portal144

contents are stored as plain files on the system. The browser will contain custom145

logic to load the local HTML file instead of the portal URL when no Internet146

connection is available.147

A separate process will periodically compare the locally-stored HTML file and148

resources against the portal server and refresh the local copy.149

This is the least flexible choice, and the locally stored copies cannot be used as150

cache to speed up rendering when the connection to the Internet is available.151

6

	How HTTP caching works
	Caching in WebKit
	Client/Server implementation strategies
	Application cache
	Custom HTTP application caching server running locally
	Separatedly-maintained locally accessible copy of the portal contents

